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A multispecies gas described by coupled nonlinear Boltzmann equations is 
studied as a dynamical system. Properties are determined of the N coupled non- 
linear ODEs for the number densities obtained from the Boltzmann equations 
for the spatially uniform system of N species undergoing binary scattering, 
removal, and regeneration in the presence of an external force field and a reser- 
voir of background gas. The physically realizable set Q, the nonnegative cone in 
the N-dimensional phase space of species number densities, is established as 
invariant under the flow. The fixed-point equations for the ODEs are shown to 
be equivalent to 2 N linear systems, and conditions for the stability and 
instability of the fixed points are then established. Stable fixed points are 
demonstrated to exist in Q by showing that they enter via a sequence of trans- 
critical bifurcations as physical parameters are varied. For the two-species case 
the typical global structure of the solutions is established. Various particular 
cases are described including one which possesses an infinite family of periodic 
solutions and one that depends delicately upon initial conditions due to a 
separatrix that separates Q into two invariant sets. 

KEY WORDS: Kinetic theory; dynamical systems; Boltzmann equations. 

1. I N T R O D U C T I O N  

Recently Boffi e t  al. ~)  derived model equations describing the time 
evolution of spatially uniform, multispecies, rarefied gas mixtures with 
binary scattering, removal, and production processes in the presence of a 
reservoir of background gas and a conservative external field. The 
evolution equations, in the form of N coupled nonlinear ODEs for the 
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number densities pi(t), i=  1, 2 ..... N, of the N reacting species were derived 
by integrating a set of coupled Boltzmann equations, namely 

( ~  + ~i  Fi. ~v)f,.(v, t) 

N + I  

- Z fe(v, t) ~ go.fj(w, t) dw 
j = l  'J~3 

N + I  

+ ~ 3 3 g J I u ( v ' w '  
j = l  

N + I  

+ ~ g~/,eX~j(v, w' 
j = l  3 3 

over velocity with the assumption that all the interaction frequencies per 
unit density g( Iv ' -w ' l )  are independent of velocity. The interaction 
processes were limited further by the assumption that species i is produced 
only in reactions between species i and species j and never in reactions 
between species j and k (j  ~ i, k :~ i). Species N + 1 is a background gas of 
constant density. With these restrictions the evolution equations for the 
number densities 

pi(t) = f~3 f,-(v, t) d3v (2) 

become(l) 

i _ - 1 2  ,3, 
j = l  

for all particle-conserving scattering kernels H~(v', w' ~ v). The parameters 
vi, which describes the reactions of species i with the background gas, and 
C;j, which describes the interaction of species i with species j, are defined in 
Ref. 1. These N + N 2 parameters are restricted on physical grounds only by 
the following conditions(I): 

(i) C.~O. 
(ii) If C~ < 0, then Cji ~ O. 

Boffi et al. studied these equations for the cases N =  2 and N =  3 by 
numerical integration for various specific parameter values. In the present 
paper details of both local and global dynamics of the system are analyzed 
for various parameter regions and the bifurcations and resulting changes in 
the dynamics that occur as parameters are varied are investigated. Treating 
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the evolution equations (3) as a nonlinear dynamical system, we view the 
solutions as trajectories or orbits in an appropriate N-dimensional state or 
phase space. Various theorems from dynamical systems theory, such as the 
Liapunov linearization theorem (2) (Liapunov's first method), and invariant 
manifold theorems, such as the center manifold theorem, (3) provide basic 
tools for the analysis. 

After first establishing that the evolution equations are well posed for 
the nonnegative number densities, the fixed points (steady states or 
equilibria) of the system are examined for the N-species case and their 
stability properties are studied. The typical bifurcation that occurs as the 
parameters are varied in the N-species case is discussed. These results 
provide information on the steady states to which these N-species gas 
mixtures can evolve for various parameter values and on the qualitative 
differences in these steady states that result from different parameter values. 

Specializing to the two-species case (N= 2) allows some very strong 
results from the dynamical systems literature (e.g., the Poincar6-Bendixson 
theorem) (2'4) on two-dimensional vector fields to be used to establish global 
results for most of the physical parameter regions. Also, Peixoto's 
theorem (5) allows fairly strong statements to be made concerning the struc- 
tural stability of the equations in this two-species case. These results 
provide complete knowledge of the long-term behavior of the two-species 
mixture. Two-species gas systems, as characterized by their parameter 
values, that show time-periodic variations in number density or great sen- 
sitivity to the initial preparation of the system are identified and discussed. 
Finally, the structural stability results for the two-species system guarantee 
that the introduction of additional interaction processes to the model will 
have no qualitative effect, provided the cross sections for these interactions 
are sufficiently small. 

2. N-SPECIES GAS 

2.1. Nonnegativity of Solutions 

The interpretation of Pi, i=  1, 2,..., N, as number densities requires 
that Pi/> 0, so the appropriate state space on which to consider Eq. (3) is 
the set 

Q= {(pl,..., PN) E [~N[pi>/0 } (4) 

which is an N-dimensional nonnegative cone. Given this physically 
appropriate space, which will be equipped with the relative topology, (6) it is 
necessary to know that Eqs. (3) determine a unique solution for every 
initial condition in Q and that the functions pi(t) so determined remain 
nonnegative. In other words, there must be a unique trajectory through 
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each point in Q and the trajectory must be contained in Q. That Eqs. (3) 
determine unique solutions defined for some maximal time interval is 
automatic from standard existence, uniqueness, and extension results for 
ODEs. (2) The nonnegativity results from the following proposition. 

Proposition 1. Q is invariant under the flow (evolution) defined 
on RN by Eqs. (3). 

Proof. Note that if the N-tuple p(t) = (pl(t) ..... pN(t)) is any solution 
of Eqs. (3) and pk(T) = 0 for some k and T (T positive, negative, or zero) 
in the domain of the solution, then pk(t) = 0 for all t in that domain. This 
follows from the uniqueness of solutions with Cauchy data p(T) and the 
fact that there exists a solution [verified by substitution of pk(t)= 0 into 
Eqs. (3) and the standard existence theorem] with pk(t)-O. Let the N- 
tuple p(t) = (pl(t),..., pN(t)) denote the solution of Eqs. (3) with initial con- 
dition p(0) a point in Q. Suppose that there exists t' such that p(t') is not 
in Q. Then there must exist k and T such that pk(O)>O, p~(t')<0, and 
(hence, by continuity) pk(T)=0. But then pk(t)==_O, contradicting 
pk(0) > 0; hence, there exists no solution such that p(0) is in Q and p(t) is 
not in Q for some t. | 

This proposition shows that it is permissible to restrict the system to 
the physically relevant set Q. The proof also shows that no number density 
can become zero in finite time. Finally, the key element in the proof applies 
to the case when p~(T)= pb(T) . . . . .  0, thereby providing a corollary. 

Corollary. Any set of the form 

{(p, ..... PN) IP~ = P~ . . . . .  0} (5) 

for any set of indices (a, b,... } is an invariant manifold. 
Proposition 1 and the standard extension theorem for ODEs also 

guarantee that either a solution is defined for all time (possibly diverging as 
t-~ oo ) or else some number density goes to positive infinity in finite time. 

This proposition shows that the evolution equations have the 
physically necessary property that the number densities remain non- 
negative. 

2.2. Fixed Points and Local Analysis 

Fixed points of Eqs. (3), which represent steady states where removal 
and production processes balance for each species, are found by solving the 
system of N algebraic equations 

O=pi(--~) i -- ~ Cijpj ) (6) 
j = l  
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for the N quantities pie, i = 1, 2 ..... N. Because each equation in this system 
is a product of two factors, this fixed-point problem can be solved using 
simple techniques from linear algebra. Let I be a (possibly empty) set of up 
to N integers and write card(I) for its cardinality. Also, denote by I' the set 
of integers between 1 and N that are not in / .  Now let f i  = 0 if i ~ I and let 
f j, j ~ I', satisfy the linear system 

- v j :  ~ Cjkfk (7) 
k~I' 

Note that it is possible for a f j, j e I', to be zero or nonzero. The fixed- 
point problem (6) can then be solved completely by considering the 2 N 
possible index sets I and solving the linear system (7) for each of the index 
sets I'. 

In order to characterize the structure of the set of fixed points, it is 
convenient to introduce some notation. Let Cr be the matrix obtained 
from [Cej] by eliminating each row and column indexed by an element of 
/, or equivalently by retaining those indexed by an element of 1'. Similarly, 
let Vr and fI' be the vectors obtained from [ve] and [fie] by eliminating 
each entry indexed by an element o f / .  Using this notation, we can write 
the linear system (7) as 

- vr = CrPr (8) 

where Cr is a square matrix of dimension card( / ' )=  N - c a r d ( I ) ,  and all 
fixed points, solutions of Eq. (6), are of the form 

0, i ~ I  
f i =  [ f I ' ] i ,  i e I '  (9) 

The following proposition on the existence and nature of fixed points in ~N 
is then immediate from linear algebra. 

Proposition 2. 

1. fii = 0, i =  1, 2,..., N, is a fixed point for all parameter values. 

2. If, for a given I, v i ,r  and d e t [ C r ] r  then Eq. (8) defines a 
single fixed point not equal to zero. 

3. If, for a given/ ,  de t [Cr ]  = 0  and if - v r •  then there is a 
d-dimensional manifold of fixed points of the form 

0, i e I  

fi= [~]q-P]i' iEI '  
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where t/~ N(Cr)~ the nulI space of the matrix Cr,  d is the dimen- 
sionality of this null space, and p is any solution of Eq. (8). The 
condition relating v:, and the adjoint operator C~, guarantees that 
p exists. When vr = 0 the manifold passes through the origin. 

This proposition does not guarantee that the fixed points are in Q, i.e., 
that all fi,-(t)i> 0. Except for (0,..., 0), there may be no fixed points in Q. 
However, because a nonsingular matrix such as appears in part 2 of the 
proposition is one to one and onto, it is possible to choose the elements of 
Vr so that Pl, contains only positive entries. Indeed, let {I~:} be a collection 
of pairwise disjoint index sets such that ~k card(I~,) = N. Then, by choosing 
the values of C o, i , j =  i, 2 ..... N, such that de t [C4]  r  for each k, it is 
possible to choose v~, i = 1, 2 ..... N, so that each element of r 4 is positive. 
Then, for each k, Q would contain an isolated fixed point with card(I~) 
positi~,e number densities and card(Ik)= N-card(I~,)  zero number den- 
sities. For example, let k =  1, 2,_., N and Ik=  {k}. Then, for C , > 0  and 
vi<0,  i =  1, 2,..., N, there are N fixed points in Q of the form r 
i = 1, 2,..., N, i r  k, and Pk = --vk/Ckk. Even for parameter values satisfying 
this latter prescription, however, there may be more than N + 1 fixed points 
in Q. For example, for N = 2 ,  Cll = C22= 1, C12= C2~ = 3, and 
vl = v 2 = - 2  there are 4 = 2  N fixed points in Q. In summary, there is 
always at least one fixed point in Q (the point tSk=0) and for any K, 
1 <<.K<~N+ 1, it is possible to choose parameters so that there are exactly 
K special fixed points in Q, at each of which a specified set of number 
densities is positive, provided that a number density that is positive at one 
of these special fixed points is zero at the other K -  1. At such a set of 
parameter values there may be other fixed points also in Q. It is reasonable 
to conjecture that for any N and any K, 1 <~K<~2 N, it is possible to find 
parameter values satisfying conditions (i) and (ii) of Section 1 and for 
which there are exactly K fixed points in Q. This conjecture is easily verified 
for N =  1, 2, and 3. But even if this conjecture is true in general, there 
are still other sets of parameter values, characterized by part 3 of 
Proposition 2, that satisfy conditions (i) and (ii) and for which there is an 
infinite number of fixed points in Q. An example of such a case for N = 2 is 
discussed in Section 3.6. 

It is possible to make some statements concerning the stability of these 
various fixed points. The zero fixed point is the easiest to study and its 
stability properties will be described first. 

Proposit ion 3. 

1. If ])i > 0, i =  1, 2 ..... N, then (0 ..... 0) is asymptotically stable. 
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2. If v i>O, i= 1, 2,..., N, l r  v k=O, and Ck~:>0, then (0 ..... 0) is 
asymptot ica l ly  stable. 

3. If v i <  0 for any i, then (0,..., 0) is unstable.  

ProoL The linearized p rob lem is governed by the Jacob ian  
J0(0,..., 0 ) =  vi 6ij, so if v i > 0  for all i the linear p rob lem is asymptot ica l ly  
stable, while if vi < 0 for any i the l inear p rob lem is unstable. Par ts  1 and 3 
of the p ropos i t ion  then follow f rom s tandard  i inearization theorems.  (z7~ If 
vk = 0, the zero eigenvector  of J~:i is (0,..,, p.~ ..... 0) and  then by the center 
manifold  theorem (3) and  the corol lary  to Propos i t ion  1 the set 
{(Pl ..... p u ) e Q J p ~ = O  V i C k }  is a local center manifold  for (0,..., 0). This 
manifold  is asymptot ica l ly  stable, since all eigenvalues of  Jr  are negative 
except - v  k = 0  and the flow in the manifold  is governed by 
t )k  = - - C k k P k P k .  If p~(0) >~ 0, then l im ,~  o~ Pk(t) = 0; hence par t  2 follows 
f rom the center manifold  theorem.  | 

It  is impor t an t  to note  that  in case 2, zero is stable in Q not  in [~u; this 
is why Q is given the relative topo logy  (Fig. 1). It  also is possible to study a 
case with v j = O  f o r j e  {kl, k 2 ..... kM} and v i > O  for ir {kl ,  k 2 ..... kM}. The 
center manifold  theorem then allows the stability of  (0 .... O) to be deter- 

l 
1 

j 
o 

Q II 

Fig. 1. The local flow near 0 = (0,..., 0) when v k = 0, v i > 0, i ~ k, and Ckk > 0. In the physical 
state space Q, 0 is stable, while in W v it is unstable. 
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mined by considering the flow on the M-dimensional center manifold, 
which is identical to the M-dimensional eigenspace of the zero eigenvalue 
(see corollary to Proposition 1). Thus, the flow is governed by the M 
ODEs obtained by fixing pi(t)=O, iq~{kl,kz,...,ka4}, in Eqs.(3). For 
example, if Ck,kj >>- 0 for every pair of kikj the origin (0 ..... 0) is easily shown 
to be asymptotically stable. If vl = •2 = 0 ,  the more complete results (not 
restricted to Ck,kj>~O) for the two-species equations derived in Section 3 
can be applied to understand the flow in the two-dimensional center 
manifold of (0 ..... 0). 

As vk passes through zero, a bifurcation occurs in which a fixed point 
~k=--vk/C~k,~i=O, i = l, 2,..., N, ir enters Q. In the invariant 
manifold defined by the Pk axis the flow is determined by 

tsk = p ~ (  - v~ - -  c ~ p k )  ( l O )  

which is the normal form for the transcritical bifurcation. (8) As vi becomes 
negative, the new fixed point enters Q and becomes stable while (0 ..... 0) 
becomes unstable. This stability result follows directly from the exchange of 
stability that occurs in a bifurcation at a simple eigenvalue. <9) (See Fig. 2.) 
The stability result also may be confirmed explicitly since 

Jo(O,..., --vk/Ckk,..., O)= ~(--Vi+ Cikvk/Ckk) •0' i~k  (11) 
C k j ] ) k / C k k  , i = k 

has eigenvalues --v~+C~kvk/Ckk, iCk, and Vk. Thus, if Ck~>0, vi>0,  
vk < 0, and ]Vk] is sufficiently small, all of these eigenvalues are negative and 
the new fixed point is stable by the linear stability theorems. <2'7) 

To develop some stability results for the other fixed points, we note 
that the Jacobian matrix is given by 

N 

Jij(Pl ..... PU) =~O'(--Vi - E CikPk)--piCii (12) k=l 
Thus, given an index se t / ,  

l ( - v ~ -  ~ C~kpk) 6i/, ice 
J b / ( P l  .. . . .  J0N) = ~ k+r (13) 

-fiCo, ir 

The spectral properties of this matrix can provide information on stability 
through the various linearization theorems. (27) The difficult task in deter- 
mining these spectral properties is to find eigenvalues for a matrix of the 
form 

Jr= [-piCo-], i, j~I' (14) 
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" ' "  l 
V k 

pk = -z,'k/C.k 

Fig. 2. The location of tS~ versus v k and its stability as determined by the flow in the 
invariant manifold, the p~ axis. 

Letting 2~ denote the eigenvalues of J r  (not necesarily distinct), one 
immediate observation is that 

Re(2 , )=-~  fiiC~i~<0 (15) 
i ~ l '  i ~ l '  

for every fixed point (fl,..., fiN) (~ Q, since C,  ~> 0. Thus, provided there is at 
least one i such that C, f i r  O, there is at least one eigenvalue with negative 
real part and therefore at least one contracting direction at every physically 
relevant fixed point. 

A stronger result may be found by observing that 

and that 

det[-Jr] = ( -  1) N-c~d(') d e t [ C r ]  I-I fii 
i ~  I '  

(16) 

d e t [ J r ]  = I-[ 2i (17) 
i ~  I '  
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Now, defining 

A = d e t [ C r ]  lq tSi 

it is easy to show the following result. 

Proposit ion 4. 

1. If A < 0, there is a real, positive eigenvalue. 

2. If A = 0, there is a zero eigenvalue. 

3. All eigenvalues have negative real part only if A > 0. 

Proof. Part 2 is obvious and part 3 follows from parts 1 and 2. To 
prove part 1, suppose A < 0. First, let N -  card(I), the dimension of J r ,  be 
even. Then FI 2~ = A < 0. If Im(2~) r 0, then 2i also is an eigenvalue, and 
2;2;>0. Thus, there must be an even number (not zero) of eigenvalues 
with Im(2~)= 0 and an odd number of these must be negative. Hence, there 
must be at least one real, positive eigenvalue. Now, let N-card(I) be odd. 
Then 1-I 2t = - A  > 0. Hence, there is an odd number of 2; with Im(2~) = 0 
and an even number of these must be negative. Hence, again there must be 
at least one real, positive eigenvalue. I 

Some stability results follow from the above. Let I be an index set, and 
suppose that a corresponding fixed point is physical, i.e., fi~>0, 
i = 1 , 2  ..... N. Clearly, from Eq.(13) this fixed point is unstable if 
( - v i - ~ j ~ r C u c S j ) > 0  for some iEI. Also, from Proposition4, a fixed 
point in Q is unstable if, for the index set I with ~5~ > 0 for all i e I', the con- 
dition de t [Cr ]  < 0 holds. This latter condition is useful since it requires no 
knowledge of the Jacobian and only lower bounds on the r Also, it is 
possible to state that the Jacobian will have a zero eigenvalue if either (1) 
~5i=0 for any ieI ' ,  (2) de t [Cr ]  =0 ,  or (3) ( - v t - Z j ~ r  Cijfij) = 0  for any 
i ~/. (Recall that, if i e / ,  then fit = 0; however, one or more fit, i r  which 
satisfy a linear system also could be zero.) Fixed points such as these, with 
singular Jacobians, are interesting for two reasons: first, linearization 
theorems break down at such points, requiring more subtle stability 
analyses, and second, in view of the implicit function theorem, such a fixed 
point may bifurcate into several fixed points at nearby parameter values. In 
fact, as will be shown below, conditions 1 and 3 will lead to the typical 
bifurcation wherein a new fixed point enters Q. 

The zero-eigenvalue condition, condition 2, and the existence of 
manifolds of fixed points (Proposition 2, part 3) require a very specific 
condition on the parameters, namely that some determinant of C o be zero. 
However, it is always possible to select new values of the C~j that are as 
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close as desired to the original values, but for which de t [Cr]  # 0 for every 
index set L This results from the following proposition. 

P ropos i t i on  5. Define the good sets 

GSr = {C O .~ ~U2lde t [C/ , ]  4: 0} 

and the physical set 

P= { CO.E RN2I Cii>~ O, if CO.< 0 then Cji>~ O } 

Then {01, GSr} c~P is open and dense in P. 

Proof. Each GSr is obviously open. Now let 2r=min{lRe2112 an 
eigenvalue of Cr with IRe2l:~0}. Then there exists e > 0  such that 
e<min{2r l I '  an index set}. Then d e t [ C r - 6 ]  r  for any I' and any 6, 
0 < 6 < e .  Thus, G s = o r  GSr is open and dense in ~2u and so the 
proposition follows. | 

This proposition guarantees that whenever the parameters C~ are 
chosen so that a manifold of fixed points exists, then it is only necessary to 
change the parameters Ci~ by any small amount to destroy the manifold. 
Thus, typically the system could have anywhere between one and 2 x 
isolated fixed points in Q, but no manifolds of fixed points. Such manifolds 
are exceptional. Most importantly, excluding the exceptional parameter 
values, there can be at most one fixed point with all positive number 
densities. If there is such a fixed point and det[C0] < 0, then it is unstable 
by the first instability criterion. Further, since the typical dense parameter 
set has C~ > 0, i = 1, 2,..., N, by Eq. (15) such a fixed point typically would 
be a saddle point. 

With the parameters restricted to the good set described in 
Proposition 5 the typical bifurcation that occurs as a fixed point moves 
into Q can be described. Let /7 be a fixed point of the form 
(Pl ..... fin, 0,..., 0) with r i=  1, 2 ..... n. Then ~ is determined by the 
linear system 

- v i  = ~ Co.~j, i= 1, 2 ..... n (18) 
j = l  

Also, let ~ =  (Pl,..-, ft,+l, 0 ..... 0) be the fixed point determined by 

n + l  

--vi= ~ Cij~j, i = 1 , 2  ..... n + l  (19) 
j= l  

Denote by [Co.], and [Co.],+1 the square matrices in these linear systems 

822/49/3-4-14 
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(of course, [Cu] ,+  a contains [Cu],) ,  and note that on the good set of 
parameter values det[Cu] . ~ 0  and det[Cu],+~ ~0.  

A very useful relation between (ill,-.-, r 0,..., 0) and (/51,...,/7,+ 1, 
0 ..... 0) is given by 

A det [ Ca] .  + 1 

L C n + l , j f i J - -  P n + l  ( 2 0 )  
det [Cu] ,  j = l  

To derive this, let Cof,~ n+ u be the cofactor of C u in [Cain+ 1 and simularly 
let Cof,~ ") denote the cofactor of C u in [Ca],,. Here the cofactor of the 
element C o in an n-dimensional square matrix C is ( - 1 )  ~+j times the 
determinant of the (n-1)-dimensional  cofactor matrix produced by 
eliminating row i and column j from C. Then, using the expression for the 
inverse of a matrix, i.e., Cramer's rule, 

1 n + l  
- c'm'(,~ + 1) ( 2 1 )  15~+1 detECu]~+l i=l  ~ - v i -~ - , ,~+l  

But by expanding the cofactors using the (n + 1)th row of [Cu]n+ 1, which 
is only the nth row of the cofactor matrices obtained by eliminating row i 
and column n + 1 of FCu]~+ 1, it can be shown that 

C,~r(n+~)=_L C,,+ Cof~ "), i < n + l  (22) ~*i,n + i 1,j 
j = l  

and also 

C,~r + 1) = det [Cu]n V*n + 1,n + 1 (23) 

Thus 

P.+I - detECu]~+ 1 1  -i 1 j = l  - -  F i C n +  1,j C o f ~  n ) -  Vn+ 1 detEC0]. (24) 

o r  

detECu]n pn+l = - v . + l -  Cn+I,j - v i  (25) j= 1 i= 1 det [Cu] ~ 

and since 
n C'of(n  ) 

= ~ - -  V i ~v~O" 
fiJ ,~l de t [Cu] .  

this establishes the relationship given by Eq. (20). 

(26) 



Dynamics of Boltzmann Equations 619 

Equation (20) guarantees that there are parameter values at which 
/Sn +1--0. Any set of parameter values that satisfy 

0 =  - V n + l -  ~ Cn+l.jf3j (27) 
j = l  

where fij satisfy Eq. (18), det[C0.], =#0, and det[Cij]n+ ~ :/=0 will do. Such a 
set of parameters values [i.e., a set for which Eq. (27) is satisfied] will be 
called critical. For example, for any good values of Cis, i, j = 1, 2 ..... n + 1, 
and vi, i = l , 2  ..... n, choose vn+~ to satisfy (27). But if /5n+,=0, then 
Eq. (19) becomes 

--Yi = ~, Cij/5 j (28) 
j = t  

while det['Cij]~ :A0 and det['Cu]n+ , 4:0 imply that/7 and/5 are unique, so 
/5 = t~ in this case. It is therefore possible (e.g., by varying v,+ 1) to cause 
/sn+, to vary from negative to positive while the fixed point /5 moves 
through the fixed point ~. By continuity, near any such critical parameter 
values it must be that /5~ > 0, i = 1, 2,..., n, since this holds for r A bifur- 
cation results as the fixed point p moves into or out of Q. 

From Eq. (13) the Jacobian matrix at/5 is 

-/SiC,j, i = 1, 2 ..... n 

J~,(fi~ ..... /5,, 0,. . . ,0)= ( - - v ~ + l -  ~ C,,+I,sPj) 6,,+,j, i = n + l  
j = l  

) 
~ j = l  

Thus, in light of (20), 

Jij(~, ,..., ~ , ,  0,..., 0 ) =  

where 

- p i C i j ,  

s/5n+ 1 ~n+ 1,y, 

j = l  

s = det[Cg]n/det[Cij]n+ 1 

This Jacobian has an eigenvalue 

i = n + 2  ..... N 

(29) 

i = 1, 2,..., n 

i = n + l  
(30) 

i = n + 2 , . . . , N  

(31) 

= S/sn + 1 (32) 
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Clearly, this eigenvalue passes through zero as fin+l does. At the critical 
parameter values f t , + l =  0 and 2 = 0, the zero eigenvector of Jij(fi) is of the 
form (71 ..... Yn, 1, 0 ..... 0), where 

~ CJ i  = -Ci.n+ l (33) 
j = l  

This has a unique solution 7i, i =  1, 2 ..... n, since det[Cij]n ¢0 .  Thus, at the 
critical parameter values where fi = ~ there is a center manifold through (5 
and tangent to (71 ..... ~ ,  1, 0,..., 0). If, when 2= s ~ ,+ 1  = 0, the Jacobian at 
fi = fi has all eigenvalues except 2 with negative real part, then the bifur- 
cation is a transcritical bifurcation. This is a bifurcation at a simple eigen- 
value and must exhibit an exchange of stability. °) T h e / ~ + l  axis can then 
be used to provide local coordinates in which the bifurcation appears as in 
Fig. 3. 

The fixed point fi is then stable when 2 = st~,, + 1 < 0 and the exchange 
of stability requires that fi be unstable when 2 < 0, while for 2 > 0, fi is 
unstable and ~ is stable. This suggests the following result. 

P r o p o s i t i o n  6. Let N and K be given, N > 0 ,  O<~K<~N. Then 
there exists a set of parameter values in 01, GSr n P such that the N-species 
equations (3) possess a stable fixed point with K positive number densities 
and N - K  zero number densities. 

Proof. Let the fixed point be of the form (/~1, f52 ..... /~k, 0,..., 0) with 
fii>0. If K--0,  choose v;>0,  i =  1, 2,..., N, and then this proposition 

/ 
/ 

/ 

Fig. 3. 

On. 

/ 
/ 

/ 
/ 

/ 

Pn+l 

/ j!jI/Ji jj 

S>O S<O 

The local flow in the invariant manifold, the P ,+I  axis. The two exchanges of 
stability possibilities (s > 0, s < 0) are shown with the flow in Q. 
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follows from Proposit ion3. If K = I ,  choose C l 1 > 0 ,  Vl-,~0 , viz>O , 

i = 2  ..... N; then (--vl/CH, 0,..., 0) is a stable fixed point. The proof is now 
completed by induction. Suppose the proposition is true for K =  n and let 
(fix ..... fin, 0 ,0  ..... 0) be the stable fixed point. By Proposition 4, 
det[C~j]n > 0. Now, because of the transcritical bifurcation, it is possible to 
choose e, vn+x, Ci, n+l, and Cn+l,i, i =  1, 2,..., n +  1, so that 
de t [Ci j ]n+~>0,  e > - v n + x - X ~ =  Cn+ lP j>0 ,  and so that (/~l,.-.,P~+x, 
0 ..... 0) is stable. It is clear that the parameters so chosen can be in 
OrGSrc~P (e.g., choose Cn+x.n+l>0 and C~.~+l, Cn+l,~, i = 1 , 2  ..... n, 
small in magnitude). Thus, the proposition holds for any K. | 

More graphically, the fixed point (-vx/C~, 0 ..... O) is brought into Q 
in a transcritical bifurcation at (0 ..... 0). It becomes stable and (0 ..... 0) 
becomes unstable. The point (--v~/CH, 0,..., 0) is guaranteed to be stable 
for some range e 1 ) - F  1 ~-0 and CH > 0. Now fix vx in this range and fix 
Cll and vary v2, C22, C~2, and C2~ to cause a transcritical bifurcation at 
(-v~/CH, 0 ..... 0). Again the exchange of stability takes place and a 
new fixed point of the form (fi~:), t~(22), 0 ..... 0) becomes stable as it enters 
Q and remains stable for some range of parameters with 
/;2 > - - 1 ' 2  - -  C 2 1 (  - -  1'1/Cll) > 0 and det[C~] 2 = CH C22-  Ci2 C2x > 0. This 
process is continued up to a stable fixed point of the form 
(r r 0,..., 0) (Fig. 4). 

/ 1  

P 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i-" 

P, 

% 
Fig. 4. A stable fixed point created by a sequence of three transcritical bifurcations. 
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It is easy to write down the necessary conditions for the existence of 
the stable fixed point created by such a sequence of K transcritical bifur- 
cations: 

la .  C l l  > 0 

lb. - V l > 0  

2a. Cll C22 --  C12 C21 > 0 

2b. - v z - C 2 1 ( - v l / C l l ) > O  

3a. det[Co]3 > 0 

ma. det[Co.]m >0 
rob. - v  __~'m--I -(m--i) m / ' J = l  Cmj,Oj >0 

Ka. de t [c~]K> 0 

Kb. - v , , - E ~ _ l  C,~j~) K 1~>0 

and if K <  N 
K 

- v i -  Y~ c o ~ }  '~ < o, 
j--1 

where p}m 11 satisfy 

i = K +  1,..., N 

m--1 
- v , =  ~ Cij~} m 1) (34) 

j = l  

and det[Cij]m is the determinant of the m x m matrix with i, j = 1, 2 ..... m. 
Clearly, the labeling of indices is arbitrary. 

2.3. Some Three-Species Examples 

In this subsection the three specific three-species systems studied 
numerically by Boffi et al. (1) (Table I) will be examined briefly. The first 

Table I. Parameter  Values Used by Boffi e t  a l .  (~) 

Case vl Cll C12 C13 Y2 C21 C22 C23 F3 C31 C32 C33 

1 0 1 1 1 0 2 2 2 0 3 3 3 
2 - 3  7 2 0 1 - 4  0 2 .5 0 - 1  0 
3 - 3  1 2 0 1 - 4  0 2 .5 O. - 1  0 
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case is quite trivial; (0, 0, 0) is the only fixed point in Q and it is easy to 
prove that every solution with initial condition in Q evolves to this fixed 
point. There is a manifold of fixed points, but it intersects Q only at 
(0, 0, 0). This physical fixed point is thus a double zero: the system is at a 
bifurcation point. For instance, the introduction of any linear loss 
mechanism, i.e., a vi > 0, no matter how small, will produce a qualitatively 
different flow. 

The second case is much more interesting. Now physically relevant 
fixed points are located at (0,0,0),  (3/7,0,0),  (1/4, 5/4,0), and 
(2/7, 1/2, 1/14). This series of points corresponds to the discussion at the 
end of the previous section. From that section the conditions to be satisfied 
( la) - (3b)  become 

la. C 1 1 = 7 > 0  

lb. - v i = 3 > 0  

2a. CllC22-C12C2~--8>0 

2b. --v2--Czl(--v1/C11)=5/7>O 
3a. de t [Ci j ]3= 1 4 > 0  

3b. -v3-C31fi]2)-C32fi(22)= 3/4 >O 

These four fixed points can be viewed as having been born in a sequence of 
transcritical bifurcations as a result of a specific series of parameter 
variations. Even without explicit knowledge of the eigenvalues of the 
Jacobian at (2/7, 1/2, 1/14), the appearance of the four fixed points 
satisfying conditions la -3b  suggests that (2/7, 1/2, 1/4) is stable. In fact, 
since no additional static bifurcations occur, it will be stable unless a 
dynamic bifurcation occurs for this series of parameter variations. Also, 
conditions lb, 2b, and 3b do mean that (0,0,0),  (3/7,0,0),  and 
(1/4,5/4,0) are unstable. The numerical results of Boffi etal. (1) are 
consistent with the stability of (2/7, 1/2, 1/14), and, in fact, the eigenvalues 
of the Jacobian there are -0.1534... and -0.4100...+i(2.2801...); hence, 
(2/7, 2, 1/14) is stable. 

In case 3 of Table I there are again four fixed points in Q: (0, 0, 0), 
(3,0,0),  (1/4, 11/8,0), and (2, 1/2,7/2). Again conditions la -3b  are 
satisfied, so (0,0,0),  (3,0,0),  and (1/4,11/8,0) are unstable and 
(2, 1/2, 7/2) can be viewed as the end result of a sequence of transcritical 
bifurcations. This suggests that (2, 1/2, 7/2) is stable, which is again 
consistent with the earlier numerical results/~) In fact, the eigenvalues of 
the Jacobian at (2, 1/2, 7/2) are -0.3223... and -0.08880... +i(4.6834...), 
and so (2, 1/2, 7/2) is stable. 
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2.4. Discussion 

It should be clear from these results that Proposition 6 is useful as a 
statement concerning the types of equilibria that a gas system described by 
Eqs. (3) can possess, but not as a method to determine behavior in specific 
cases. On the other hand, the stable equilibria in the interior of Q whose 
presence is established by Proposition 6 are hyperbolic (7'8) and therefore a 
real gas system dominated by interactions like those explicitly modeled by 
Eqs. (3) will possess stable equilibria in the presence of sufficiently small 
interactions not included in Eqs. (3). It also follows from Proposition 2 that 
the only static bifurcations that can occur consist of transcritical bifur- 
cations (possibly many simultaneously) and bifurcations involving 
manifolds of fixed points ("critical" transcritical bifurcations). This implies 
that a stable equilibrium in the interior of Q could lose its stability by 
either passing through a manifold of fixed points or in a dynamic bifur- 
cation. It is therefore likely that either the conditions listed after 
Proposition 6 are both necessary and sufficient for the gas system to have a 
stable equilibrium point or else the number densities can undergo a per- 
sistent time-dependent behavior (e.g., a periodic solution in this parameter 
range). 

Another property of such a gas system concerns the stabilizing effect of 
self-removal. In a one-species ( N =  1) system with production from the 
background (vl < 0) the existence of self-removal (Cll > 0) guarantees the 
existence of a stable fixed point r = - C l l / V ~  > 0. That is, the self-removal 
stabilizes the system. For the general case ( N >  1) a similar phenomenon 
occurs. The simple observation, based on Eq. (15), is that associated with a 
fixed point where species i survives (tSi > 0) and also undergoes self-removal 
there is a stable manifold, a special set of initial number densities that 
evolve to the fixed point, even if it is unstable. Again, this property will 
survive the introduction of additional interaction processes, provided they 
are sufficiently small. 

3. TWO-SPECIES GAS 

For the two-species equations 

101 = P I ( - - v i -  C l l P l -  C12P2) (35) 

~52 = P2( - v2 - C 2 1 P x  - C 2 2 p 2 )  (36) 

Table II lists all the isolated fixed points and the appropriate stability- 
governing eigenvalues at each. For most parameter values this information 
essentially determines the local dynamics. However, the two species 
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Table II. Fixed Points and Eigenvalues for N = 2  
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~ P2 Eigenvalues 

0 0 - -VI ,  --!) 2 

0 --Y2/C22 __121 -t- Cl2(!)2/C22) ' .4-P2 
-vl/C11 0 -v2 + C21(vJCn), +v~ 

C12l)2 --  gl C22 C21Y1 - p2Cl l  - 21(C1lJ01 Jr- C22P2) 

C11C22-C12C21 C11C22-C12C21 ~I[(Cl l f i l -rCe2P2)-}-4C12f i l f i2]  1/2 

equations are sufficiently special that a number of global results may be 
established. These results concern the co-limit (omega-limit) sets of points 
in Q. Let p(t; p) = (pl(t; p), pz(t; p)) be the unique sotution of Eqs. (36) 
with p(0; p ) = p e  Q. If p(t; p) is defined for all t~>0, the co-limit of p, 
denoted co(p), is the set co(p)={qeQI there exists {tn}, an increasing 
sequence unbounded above s.t. q=limn~oo p(tn; p)}. The co-limit of p is 
where the trajectory through p accumulates and contains the asymptotic 
fate of p(t; p) as t -+ oo. The co-limit sets are clearly of great interest in the 
gas evolution problem since they specify the eventual long-time behavior of 
the system. 

For two-dimensional systems there are very strong results which 
classify the form of co-limit sets in compact positive invariant sets: the 
Poincar6-Bendixson theorem and its corollaries. ~24"s) A set K ~ R  2 is 
positive invariant if p(t; p) ~ K for all t ~> 0 and all p e K. The Poincar6- 
Bendixson theorem states that if the system has only a finite number of 
fixed points in K, then the co-limit of any p e k takes one of three forms: 

(i) A single fixed point. 

(ii) A closed orbit (e.g., a limit cycle). 

(iii) A finite number of fixed points and orbits connecting them. 

For the two-species equations (36), it is possible for most parameter 
regimes to eliminate cases (ii) and (iii) and establish that for almost all 
initial conditions p ~ Q, p(t; p) tends to one particular fixed point as t ~ oo. 

3.1. Compact Positive Invariant Sets 

In this subsection the existence of positive invariant sets in the two- 
dimensional nonnegative cone (quadrant) Q is established via the 
somewhat tedious proof of the following proposition. 

Proposition 7. Let p e Q. If Cn > 0 and C22 > 0, then there exists a 
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compact, positive invariant set K of the form {(pl, P2)[O<~pl<~kl, 
0~<p2~<k2} for the flow of Eqs. (36) with p~K. 

Expressed differently, this proposition asserts that given any initial 
condition p in Q, there exists a compact (i.e., closed and bounded) set K 
such that the solution p(t; p) of Eqs. (36) is defined for all t > 0 and such 
that p(t; p)~K for all t>~0, provided only that Cll and C22 are greater 
than zero. Thus, as long as there is any self-removal at all, no matter how 
small or large, the number densities remain uniformly bounded (and by 
Proposition 1, nonnegative) for all positive time. 

Proof of Proposition 7 is contained in the following five lemmas and 
three corollaries, each of which establishes, for different parameter regimes, 
the existence of a compact set K containing p and such that no positive 
orbit can exit K. The existence of such a compact set ensures that p(t; p) is 
defined for all t >_-0 (see Ref. 2) and thus that K is positive invariant. 

Write p = (rl, r2) with rl/> 0 and r 2 >~ 0. Each K will be a box of the 
form 

K =  {(01, p z ) 1 0 ~ p ~ < k l ,  0~<p2~<k2} (37) 

with rl<k~, and r 2 < k  2. Each lemma and corollary will assert the 
existence of kl and k 2 such that/51 < 0 on the line p~ = kl and P2 • 0 on the 
line P2 =k2 (Fig. 5). The positive invariance of K then follows from this 
and Proposition 1. 

k e m m a  1. Let Cl l  > 0, C22 > 0, C12 ) 0, C21 • 0, l~ 1 ) 0, •2 ) 0. 
Then k~ and k 2 exist. 

Fig. 5. 

k 2 

ep 

K 
\ 

k~ P~ 

A compact, positive invariant box K inside the noncompact but invariant set Q. 
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ProoL Let k I > r 1 and k2 > r2. Then, since /61 < 0 and /62 < 0 in all of 
Q, the lemma follows. | 

komma 2. Let C11>0, C22>0, C12>~0, C21~>0, vl<<.O, v2~<0. 
Then kl and k2 exist. 

Proof. Let k ~ > m a x { r l , - V l / C , }  and k2>max{r2,-v2/C22}. If 
Pl = kl, then 

--CllPl = --C11ki < --C11(-vl/Cll)= vl 

Hence 

--Vl -- C l iP1  -- C12P2 ~< - V l  - C11pl < 0 

Thus/61 <0. Similarly, i fp2=k2, /62<0.  | 

k e m m a  3. Let CH>0,  C22>0, C12~>0, C2I<0, v~>0, v2~>0. 
Then kl and k2 exist. 

Proof. Let 

kl>r~, k2>max r2, C22 1 - C22S 

Then, if pl=kl ,  -v l -Cl lP1-C12P2<O,  so /61<0. If p2=k2 and 
O<~pl<~kl, then - -C21Pl  ~< - C 2 1 k l ,  so 

-v2 - C2a Pl - C22P2 ~< -v2 - C21 kl - C22k2 

But -C22k2< C21kl +V2, SO - v 2 - C z l p l - C z 2 P 2 < O  and thus/62<0. | 

Corol lary.  Let CH>0,  C22>0, C12<0, C2~>0, vl~>0, v2~>0. 
Then k1 and k 2 exist. 

Proof. Permute the indices of Lemma 3. | 

I .emma 4. Let Cll > 0, C22 > 0, C12 >~ 0, v~ ~< 0, v2 >~ 0. Then kl and 
k 2 exist. 

Proof. Let 

k~>max rl, Cll ~ k ~  - -  , k2>max r2, + 

If pl = k l ,  then Pl > -vl/Cl~, so -C~lpl < Vl and therefore 

- - Y l - -  C l l P l - -  C12P2 < - C 1 2 P 2 ~ 0 .  
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Thus, t~l <0 .  If P2 =k2 and 0~<p~ ~<k 1, then 

and so 
so 

Holloway and Doming 

P2 > C22 kl + 

- C 2 2 P 2  < -IC21kl + v2l. But if C21 < 0, then -C21pl  <~ - C 2 1 k l ,  

--V2 --  C21Pl -- C22/92 < - (Y2  -}- C21kl q- 1C21kl + v2l ) <~ 0 

while if C21/>0, then - C 2 1 P l  4 0 ,  SO 

--V2 -- C21Pl -- C22P2 < - ( v2  -[- 1C21kl + V2I) ~-- --(Y2 + C21kl q- ]'2) ~ 0 

So, if p2=k2 and 0~<pl~<kl, then -v2-C21pl-Cz2P2<0, and then 
/)2 < 0 '  I 

Corollary. Let Cl1>0, C22>0, C21>~0, vl~>0, v2~<0. Thenkland 
k2 exist. 

Lemma 5. Let C~1>0, C22>0, C12<0, C21~>0. Then kl and k2 
exist. 

Proof. Let 

> max )'r I C12 k vl ) v2 kl  
' . G ,  J 

If Pl = k~ and 0 ~< P2 ~< k2, then 

C12 k vl 
Pl = ka > C1~ 2 hI- Cl  1 

SO -- CliP1 < ] - C 1 2 k  2 "-k vii and - C12P2 <~ --C12k2, hence 

- v l - C H p [ - C l z p 2  < - ( v l  q-C12k2-1- lC12k2 + v11) <~ O 

and thus Pl < 0. Similarly, if P2 = k2 and 0 ~< pl ~< kl ,  then 
P2 = k2 > 1Y2/C221, SO -- C22P2 < --[V2I and hence 

--V 2 - C 2 1 p 1 - C z 2 p 2 <  --(V 2 + t v 2 [ ) - C 2 1 p l ~ 0  

so if2<0. I 

Corollary. Let Cu>0, C22>0, C~2>~0, and C2~<0. Thenk~ and 
k2 exist. 
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Lemmas 1-5 and the associated corollaries include all possible com- 
binations of physical values for C~2, C2~, v~, and v2 [i.e., those that satisfy 
conditions (i) and (ii) in Section 1]; hence, Proposition 7 is proved and 
there exists a compact, positive invariant set K of the form 
{(pl,P2)lO<.pl<~kx,O<~pz<k2}, k~,k2 finite, for the flow in Q with 
p~K. 

3.2. Fixed Points on the Boundary 

These results on compact, positive invariant sets and the Poin- 
car6-Bendixson theorem will now be used to establish some results on the 
asymptotic behavior of the two-species gas mixture. The first results con- 
cern the cases where fixed points occur only on the boundary of Q. These 
cases are greatly simplified by the Poincar6 index theorem, (8) which states 
that if a two-dimensional system has a closed orbit (corresponding to a 
periodic solution), then there must be a fixed point in the region bounded 
by this orbit. Since Q is invariant, by Proposition 1 this means that there 
can be no closed orbit in Q unless there is a fixed point in the interior of Q. 

Before pursuing this, however, a useful result is stated: 

Proposition 8. Recall that Cll >~ 0 and let p = (rl, 0) with r 1 > 0. 

1. If vl >~ 0, but vl and C1~ not both zero, then co(p) = (0, 0). 

2. I fv~<0 ,  then co(p)=(-Vl/Cll,O). 

�9 P 

0 

K + 

O= -#'I 

-z/~/C u 

-Cup~-Cm P2 

P~ 

Fig. 6. The sets K + and K for C12 • 0, in which case K is positive invariant. For C12 > 0, 
K + is positive invariant, while for C12 = 0 both are positive invariant. 
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ProoL If C l l = 0 ,  then p(t;p)=(qexp(-vl t ) ,O) .  If C n > 0 ,  there 
exists compact, positive invariant K by Proposition 7, so p(t; p) exists for 
all t >~ 0 and co(p) # ~ .  Since/51 = P l ( - V l  - C l i P 1 ) ,  it follows that /51 < 0 
for vl>~0 and p~r  while for v l<0 ,  one has /5~>0 if 0 < p ~ <  --Vl/CH 
and/51 < 0 if - vl/Cll < Pl. The proposition easily follows. | 

Corol lary .  Recall that C22 ~> 0 and let p = (0, r2) with r2 > 0. 

1. If v2 >/0, but v2 and C22 not both zero, then co(p) = (0, 0). 

2. If 1)2<0 , then co(p)= (0, -v2/C22). 

Because of this proposition, only the co-limits of points p = (q ,  r2) with 
rl > 0 and r 2 > 0 ,  points in the interior of Q, will need to be considered 
below. 

Proposition 9. If Clx>0, C22>0, C21~0, Vl~0, and V2~0, then 
(0, 0) is the co-limit of every point p ~ Q. 

ProoL Note that -vl/Cl1<<.0 and -v2/C22<~0. Then by 
Proposition 2 the only fixed points other than (0, 0) that might be in Q 
satisfy 

0 = --Y 1 - -  C11J01 - -  C12/02 (38a) 

0 = --V 2 - -  C 2 1 P l  - -  C22j02 (38b) 

with /)1~0 and fi2r But if t~l>0 and t52 > 0, then 
-Y2-C21/31-C22P2<O; hence, (0,0) is the only fixed point in Q. By 
Proposition 7 there exists a compact, positive invariant set K c  Q with 
(0, 0) ~ K and p e K. Since (0, 0) is the only fixed point in K, and it is on the 
boundary, there can be no closed orbit in K (Poincar6 index theorem). 
Thus, by the Poincar6 Bendixson theorem, co(p)= (0, 0). | 

Corol lary .  If Cll > 0 ,  C 2 2 > 0 ,  C 1 2 ~ 0 ,  Y1 ~ 0 ,  and V2)0 , then (0, 0) 
is the co-limit of every point p ~ Q. 

Proposition 10. If C~1>0, C=>0, Vl<0, Y2~0, and 
vlC21- v2Cll <0, then ( - v j C l l ,  0) is the co-limit of every point p in the 
interior of Q. 

Proof. Note that (0, 0) and (v~/Cn, 0) are both fixed points in Q, 
but that -v2/C22 <<.0. Solutions of Eqs. (38) with/71 S 0  and [32 r 0 might 
provide additional fixed points in Q. But for fil >0,  /32 > 0, and C2~ ~>0, 
one has - v2 - C21 fi l  - C22jo2 < 0, SO there is no such solution if C2~/> 0. If 
C2~ < 0, then a solution requires 

/ 32 (C l l  C22 - C12 C21)  = (Y1 C21 - v2 C l l )  < 0 
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which can hold only if r < 0. Thus, (0, 0) and (-v~/Cl~, 0) are the only 
fixed points in Q. By Proposition 7 there exists a compact, positive 
invariant box K c Q  containing (0,0), (-v~/CH,O),  and p. By the 
Poincar6 index theorem, K does not contain any closed orbit. 

Now consider the two sets 

K- =Kc~ {(PI ,P2)I-va-C, ,p , -C~2p2~0}  

K + =Kc~ { ( p ~ , p 2 ) l - v ~ - C . p , - C , 2 p 2 ~ O )  

(39) 

(40) 

See Figure (6). Both K -  and K + are compact and either K -  or K § is 
positive invariant, since on their mutual boundary, i.e., on 
- -F  1 - - C l l P l -  C12P2 = 0 ,  /91 = O and P2 does not change sign [otherwise 
there would be a fixed point other than (0, 0) and (-Vl/Cl~,  0) in Q]. Sup- 
pose now that there exists an unbounded increasing sequence {tn} such 
that lim p(tn ; p) = (0, 0). Note that since -v~ > 0 there is a neighborhood 
of (0, 0) (in the Q relative topology) contained in K +. Then there must 
exist N and M with M > N  such that pl(tu), Pl(tM)EK + and 
pl(tM) < pl(tu). By the mean value theorem p~(tM)--pl(tu) = 
fil(Z)(tM -- tN), where t N <~ ~ ~ IM; thus/51(z ) < 0, SO p(r; p) ~ K - .  This con- 
tradicts the positive invariance either of K + or of K . Thus (0, 0)r co(p), 
and so by the Poincar6-Bendixson theorem co(p)= ( -V l /C l l ,  0). | 

This proposition can be extended slightly to the case C~ > 0, C22 > 0, 
v l < 0 ,  v2>~O, C11C22-C12C21~0, and Y1C21--VzCII=O. Then 
(--vl/CH, 0) is still the co-limit of all points in the interior of Q even 
though one of its stability-determining eigenvalues is zero and ( - v  ~/C1~, O) 
is a double fixed point [i.e., a twofold degenerate root of Eqs. (38)]. The 
proof is essentially identical. 

Again, permuting indicies, there is an obvious corollary: 

Corollary. I f C H > 0 ,  C22>0, vl>~0, v2<0, andv2Cz2-v~C22<0,  
then (0, -v2/C22) is the co-limit of every point p in the interior of Q; and 
similarly for Cl1>0,  C22>0, vl~>0, v2<0, CHC22--C~2C2~r and 
V2 C12 --  v1 C22 = 0. 

There is one more case in which fixed points appear only on the boun- 
dary of Q. 

Proposition 11. If C11>0, C22>0, Y1 < 0 ,  V2<~0, Y1C21 - 

v2 Cll < 0, and v 2 C~2 - vl C22 > 0, then ( - v j/C11, 0) is the co-limit of every 
point p in the interior of Q: 

Proof. Note that (0, 0), ( -v~/Cl j ,  0), and (0, -v2/C22) are all fixed 
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points in Q. Any other fixed points must satisfy Eqs. (38) with fil > 0 and 
fi2 > 0. Thus, 

(vl C21 - v2Clt) + fi2(C12C21 - C .  C22) = 0 (41a) 

(v2 C12 - vl C22) + fi1(C12 C2~ - CI~ C22) = 0 (41b) 

which has no solutions in Q. The remainder of the proof is exactly as 
before. If either (0, 0) or (0, -v2/C22) were in the ~o-limit set of p, then the 
positive invariance of K + or K-  would be contradicted. | 

This proposition also can be supplemented. If C .  > 0, C22 > 0, v~ < 0, 
Y2<0, Y1Czl--Y2CII=O, Y2C12--v1C22>O (or vlC21-v2C11<O and 
v2C~2-v1C22=O) and C~1C22-C2~C~2r then (-v~/C11,0) is the co- 
limit of all points in the interior of Q. Again there are corollaries obtained 
by permuting indices. 

Corol lary.  If C l l > 0  , C22>0, Yl<0, v2<0 , vIC21-YzCll>O, and 
vz C12-Vl C22 < 0, then (0, --Y2/C22) is the ~o-limit of every point p in the 
interior of Q. Also, if v2C12-vlC2z=0, v lC21-v2Cl l>0  (or 
vzC12-vlCz2<O, vlC21-v2Cl~=O) and C ,  C22-C12C21:~0, then 
(0, -v2/C2z) is the ~-limit of every point p in the interior of Q. 

Propositions 8-11 and the associated corollaries exhaust all of the 
possible co-limit sets when C ,  > 0, C22 > 0, and there are no fixed points in 
the interior of Q. In each case one of the fixed points on the boundary 
attracts every initial condition in the interior of Q. In these parameter 
ranges a gas mixture described by Eqs. (1) with N =  2 evolves in such a 
way that either both species are consumed (absorbed) completely by the 
background gas (Propositions 9 and corollary) or one species is consumed 
completely by the other and the background gas (Propositions 10 and 11 
and corollaries). This concludes the study of two-species systems with fixed 
points on the boundary of Q. Depending on the parameter values, fixed 
points in the interior of Q also can exist. This case is treated next. 

3.3. Fixed Points in the Interior of Q 

The somewhat more complicated and dynamically interesting cases 
that occur when there is a fixed point in the interior of Q will now be 
examined. A fixed point in the interior of Q can complicate the dynamics 
either by providing an attractor on which both number densities are 
positive or by breaking Q into disjoint basins of attraction for fixed points 
on the boundary of Q. This richer dynamical behavior is reflected in the 
facts that the proofs require more constructions and the parameter ranges 
included are not quite complete. 
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C o n s i d e r  t h e  parameter r a n g e  d e s c r i b e d  by C l l  > 0,  C22 > 0,  C12 > 0,  

C21 < 0, CI2 v2 -- vl C22 > 0, and C21 vl - v2 Cll > 0. These conditions imply 
that v l < 0 and that there are at least three fixed points in Q, specifically 
(0, 0), (-Vl/Cll, 0), and (ill, #52), with 

C12V 2 - -  1~ 1 C22 
/01 - -  (42a) 

C l l  C22 - -  C12 C21 

C21 1~ 1 - -  V 2 Cll 
J02 - -  (42b) 

C l l  C22 - -  C12 C21 

(see Table II). Also, only the fixed point at (ill, r is stable. The fixed 
point (0, -v2/C=) is in Q or not in Q depending upon v2 being negative or 
positive. 

Now define the lines (see Fig. 7) 

z, = { (p l ,  o2)1o = - v l -  C l lP l  - -  C 1 2 P 2  } (43) 

12 = {(Pl,  p2)lO = --v2 -- C21pl - C 2 2 P 2 }  (44) 

and the line segment S c ll 

S={(pl,p2)Elllfil<'..pl<'..(--vl/CH),O<.pz<--.fi2} (45) 

2 2 ~  P 
2 

2 ) ' "  

Fig. 7. The geometrical content of Lemma 6 for the case v2 > 0. The t ra jectory of P l  enters 
K -  - ,  but never exits, o)(Pl)  = (Pl ,  P2). The  t ra jec tory  of P2 passes through K -  - ,  K + , K § -- 
and  crosses S. 

822/49/3 -4-15 
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Note that ( - v i /C l l ,  0)~11, (Pl, p2)~ll, (ill,/)2)ffl2, and that 
(/71, P2) = ll n 12, since C .  C22 - C12C21 > 0. 

Further, define Lj (p l ,  P2) = -Vl - C1101 - C12p2, L2(pl, P2) = 
- v 2 - C 2 1 p l -  C2202, and the sets 

g+ + = { (pl, P2)[ Zl(pl, p2) ~ O, Z2(Pl, P2) >/o } ~ g (46) 

K + - = { ( p l ,  p2)[L~(pl,p2)>~O, L2(pl,pz)<~O}c~K (47) 

K +={(pl ,P2) lLl (pl ,  p2)<~O, L2(p~,pz)>~O}c~K (48) 

K-  ={(pl,p2)lLl(pl,p2)<~O, L2(pl, p2)<~O}nK (49) 

where K is a compact, positive invariant set containing any initial con- 
dition p and all the fixed points in Q. See Fig. 7. Note that 
K = K  + + w K  + w K -  + w K  and that none of these sets is empty, 
because/71 > 0 and fi2 > 0. Each of these sets is compact and can have fixed 
points only on its boundaries and thus cannot contain a closed orbit. 

Lemma 6. If C I I > 0 ,  C 2 2 > 0  , C12>0,  C21<0,  C12v2-Y1C22>O, 
and C21Y1 - -  Y2Cll > 0, then the trajectory of a point p in the interior of Q 
either crosses S or has co(p) = (Pl, fi2)- 

Proof. The sets K ++, K - + ,  K + - ,  and K - a r e  not positive 
invariant. In fact, consider the mutual boundary of K + + and K -  + given 
by 

LI(pl, p2) = 0, t2 (P l ,  p2)~>0 (50) 

This is just the segment S. On this segment t}l = 0  and t52.-->0. Now, in 
K + +, LI(pl, P2) >>- 0 implies, since C12 > 0, that 

--V 1 Cl l  
P 2 ~  - -  Pl (51) 

C12 C12 

Thus, t52 >~0 on the boundary with K -  + implies that the flow is out of 
K + + into K + on this segment S. Similar considerations at each of the 
four mutual boundaries establishes that the flow is such that if a trajectory 
exits K + +, it enters K +. If a trajectory exits K +, it enters K - - .  If a 
trajectory exits K - - ,  it enters K + . Finally, if a trajectory exits K + - ,  it 
enters K + + 

Suppose that the trajectory of p is entirely contained in one of the sets 
K ++, K +, K - - ,  or K + -  and that e~(p)g=(fil,fi2). Since (Pl, fi2) is 
asymptotically stable, it follows that (t~l, t~2)r But since the trajec- 
tory of p remains in a compact set for all time, the Poincar6-Bendixson 
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theorem applies and since there are no periodic orbits in any of the sets it 
must be that co(p) contains one of the other fixed points. If the set contains 
no fixed point other than (/31,/52), a contradiction arises. If the set contains 
one or more of (0, 0), ( - v l / C l , ,  0), or (0, -v2/C22), then one of these is in 
co(p). Suppose (0, - v2/C22) ~ co(p). Then there exists { t,} unbounded and 
increasing such that pl(tn)--* O. But 

t l ( 0 ,  -- 1)2/C22) = ( -~ ' i  C22 '1- •2C12)/C22 > 0 (52) 

so there exists U, a Q-neighborhood of (0, -v2/C2z),  in which til >~0, i.e., 
in which Ll(p l ,  P2)>O. Since l i m p l ( t , ) = 0 ,  there exist N and M with 
N <  M such that p(tN; p ) e  U and p( tg;  p ) e  U and p l ( t g ) < p l ( t N ) .  Then 
the mean value theorem gives 

pl(tM) -- Pl(tN) = 151(z)(tm -- iN) (53) 

with tN <<. r <<. tg  and thus/~l(r)  < 0. But this requires the trajectory to exit 
whatever K it is in. A similar argument works at the other two fixed points 
and a contradiction arises. 

Thus, the assertion that the trajectory of p lies entirely in one of K + +, 
K +, K - - ,  or K + and (f i l , f i2)r contradicts the Poincar6- 
Bendixson theorem. Thus, either the trajectory of p is entirely in one of 
these sets and co(p) = (/51,/52) or the trajectory exits the set. Bur since p is 
arbitrary, it follows that if a trajectory intersects one of K + +, K -  +, K -  - ,  
or K + , then either its co-limit is (/51,/52) or it exits the set and enters the 
next in the list. 

Since S is the boundary between K ++ and K - + ,  the lemma 
follows. | 

The content of this geometrically obvious lemma is shown in Fig. 7. 
Note that even if the trajectory of p intersects S an infinite number of 
times, it could still be that co(p) = (/51,/52). In fact, this is almost certainly 
the case, as will be shown below for certain parameter regimes. 

Proposition 12. If Cll > 0, C22 > 0, C12 ~- 0, C21 < 0, 
C12v2 - vl C22 > 0, and C21 vl - v2 Cll > 0, then the co-limit of every point p 
in the interior of Q is either (/51,/52) or a closed orbit. 

Proof. By Proposition 7 there is a compact, positive invariant set K 
containing p and all the fixed points. To establish the proposition, it is then 
only necessary to show that (0,0), ( - v ~ / C l l , 0 ) ,  and, if v2<0,  
(0, -v2/C22) are not in the co-limit ofp.  At the fixed point ( - v l / C l ~  , 0) the 
Jacobian is 

J(-- vl/C11, 0 ) = / v l r  C12(Y1/Cll ) ~ (54) 
Lo (C2~ vl - v2 C . ) / C l l J  
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which has positive eigenvalue (C21Vl- v2CH)/C11 with an eigenvector of 
the form (7, 1). By the stable manifold theorem (8) there is a local one- 
dimensional unstable manifold tangent to (~, 1). Let P0 be on this manifold. 
By Proposition 7 it is possible to choose K containing Po as well; thus, Po 
has a positive trajectory in K for all time, t ~> 0, and either og(p0) = (~1, P2) 
or else the trajectory of P0 intersects S (Lemma 6). Since Po is on the 
unstable manifold of ( -v~ /CH,  0), it has a trajectory for all t ~< 0 as well, 
and p(t;po)--+(-v1/Cll , 0) as t ~ - o o .  If the forward trajectory of Po 
intersects S, denote its first intersection point by (r t52). If it does not 
intersect S, then write (r = (Pl, P2). 

Now, let C be the closed curve defined by the (forward and backward) 
trajectory of po and the line segment on S from (-Vl/Cll, 0) to (Pl, r 
(Fig. 8). This curve C separates K into two regions (Jordan curve Lemma) 
and the interior region enclosed by C is positive invariant because no tra- 
jectory can cross the unstable manifold (trajectory of Po) and the flow 
across S is into this region. This and Lemma 6 ensure that (Pl, r is inside 
C and that every point on S is either inside C or on its boundary. For any 
point p in the interior of Q, Lemma 6 then guarantees that co(p) is 
contained in the compact, positive invariant set bounded by C. 

The positive Pl axis is the unique stable manifold for ( -v~ /CH,  O) and 
so, by the stable manifold theorem, co(p) r { ( -v l /C . ,  0)} for any p not 

-vl/Cll P1 

Fig. 8. The closed curve C generated by S and the global unstable manifold of ( - V l / C l l  , 0). 
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on this axis (e.g., for points p in the interior of Q). Further, if 
( - v ~ / C l ~ , O ) e c o ( p )  the Poincar6-Bendixson theorem requires that 
(f i t ,  f i 2 ) eco (p )  also. But this would imply that co(P)= (ill, ~52), since this 
latter fixed point is asymptotically stable. It follows that ( - v ~ / C H ,  0) is 
not in the co-limit of any point p in the interior of Q. The Poincar~- 
Bendixson then requires that co(p) is either a closed orbit contained inside 
C or else is (ill, fi2) itself. | 

It should be obvious from this that the co-limit of the global unstable 
manifold (the trajectory of any Po on the local unstable manifold) in fact 
determines the co-limit of all points exterior to C. In fact, if the co-limit ofpo 
is a closed orbit, then all points outside that closed orbit tend to it. And if 
CO(P0) = (/)1, /02)' then co(p) = (ill,/~2) for all p in the interior of Q. 

The occurrence of closed orbits can be ruled out for certain parameter 
ranges by constructing a bounding map on a map generated by the flow of 
Eqs. (36). To do this, let the segment S be parametrized as 

s ~ (~1 + s, ~2 - ( c . / c ~ 2 )  s) (55) 

with O ~ s ~ ( C 1 2 / C l l ) P  2. A linear map T: S-* S will now be constructed 
(see Fig. 9). From the point So, corresponding to (pO, po) on the segment 

(B~ s~ =(C,D)~ 

A) 

-//1/611 

Fig. 9. Construction of the map T: S ~ S, T(so) = sl. 
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S c  l~ draw a vertical line segment to the point (pO, A) on the line 12. From 
(p0, A) draw a horizontal segment to the point (B, A) on ll and then a 
vertical segment to (B, C) on 12. Finally, draw a horizontal segment from 
(B, C) to (D, C) on S. The point (D, C) corresponds to a parameter value 
s~, T(so)= s~ (Fig. 9). Some straightforward algebra gives the map T as 

T , ,  (C12 C21"~ 2 
= (56) 

Now, by Lemma 6, the flow of Eqs. (36) generates a map P: S--* S 
with s = 0  and s = ( C l f f C n ) ~ 2  as fixed points. There is a closed orbit 
(periodic solution) for the system if and only if P has another fixed point in 
the open segment 0 < s  < (CI2/CH)Pz.  The map P may be compared to T 
by noting that 

p o ( _  v , -  c , , p  ? - < o, 

A ( -  v2 - C2ap1 - C22A) < O, 

B(--  v l - Clx B -  C12P2) > 0 ,  

C(  --  v 2 --  C21Pl  - C22 C )  > 0, 

p ~ < p 2 ~ A  (57) 

B ~ p l  <p~ (58) 

C ~  P2 < A (59) 

B <  Pl ~ D  (60) 

These inequalities ensure that, for 0 < s < (Ci2/CH) P2, 

T(s) > P(s) 

(see Fig. 10). Thus, P has a fixed point SF>O only if 

T(SF) > S F 

Therefore, if 

(61) 

(62) 

T(s) <~ s (63) 

for all s, P cannot have a fixed point other than s = 0 and s = (C12 /Cl l )  P2. 
Thus, if, 

(C12C2JCH C=) 2 ~< 1 (64) 

there can be no closed orbit. In this case  (P l ,  P2) is the co-limit of all points 
in the interior of Q. 

Again there is an obvious corollary to Proposition 12 obtained by 
permuting indices and the condition (64) holds for this case also. 

Two parameter ranges remain, both characterized by Cl~ > 0, C22 > 0, 
C12>0, and C21>0. They are distinguished by C n C = - C 1 2 C 2 1 > 0  , 
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\ / 

Fig. 10. Comparison of T(so) and the exact Poincar6 map P(so). The true trajectory y is 
bounded by the approximate trajectory 7b. 

C12v2-vlC22>O, and C 2 t v ~ - v 2 C ~  >O v e r s u s  C l l C 2 2 - C 1 2 C 2 1 < 0  , 

C12v2- v~ C22 < 0, and C2~ v l - v2 CH < 0. A bit of manipulation reveals 
that either case implies that v~ < 0 and v2 < 0, so all four fixed points are in 
Q. The flows for these parameter  ranges will be seen to be quite different 
from the flow discussed in the paragraph above and depicted in Figs. 7-10. 
To study these final parameter  ranges, a lemma similar to one used by 
Hirsch and Smale ~2) in a similar context will be needed. 

k o m m a  7. Let C H > 0 ,  C22>0, C~2>0, C2~>0, and either: 

( a )  Cl1C22-C12C21>0, C12Y2-Y1C22>O, and C21•1-V2Cl1>0 
(b) CllC22-C12C21<0, C12Y2-Y1C22~.O, a n d  C21YI-V2CII <O. 

Let K be any compact,  positive invariant set containing all four fixed 
points and define K § +, K + - ,  K -  +, and K -  - as above (see Fig. 11). Then 
K § and K § are positive invariant. 

ProoL It will be proven that K + is positive invariant; the proof  for 
K -  § is completely analogous. In K §  the conditions 

--V 1 --  C l l P l  - -  C12P2 ~ 0 (65a) 

- v 2  - C21Pl -  C22p2 <<. 0 (65b) 
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& 

-~2/C22 

K - ~ ~  - u2 - C2~ P1 - C22 P2 = 0 

K-- 

- v  1/Ci1 

Fig. 11. The four sets K* +, K + , K- +, and K- - .  The figure is for case (a) of Lemma 7. 

are satisfied. At - v ~  

C12 > 0, 

- C H p l - C 1 2 p 2 = O ,  K + bounds  on K - - .  Since 

--Vl Cl 1 
- -  Pl  ~ P2 (66)  

C12 C12 

for ( p l , p 2 ) ~ K  + . But on the bounda ry  with K , ~ 1 = 0  and ~2~<0, 
so there is no flow from K + -  into K - - .  Similarly, at 
-vz-Czlpl--C22p2=O, K + bounds  K ++,  and since C 2 1 > 0  

-- Y2 C22 
- -  p z  < ~ p l  (67)  

C21 C21 

for (p~, P2)~K+-- But on the bounda ry  with K + +, ~ ~> 0 and t~2 = 0, so 
there is no flow from K + - into K - - .  Finally, K + can have no other  
boundaries  other  than part  of the boundary  of K . Since K is positive 
invariant, so is K + - .  I 

This leads immediately to the following result. 

P r o p o s i t i o n  13.  If  C u  > O, C22 > O, C12 > O, C2~ > O, 
CllC22-C12C21>0,  C12Y2-~1C22>0 , and C21~)1-v2C11>0,  then 
(P~, fi2) is the ~o-limit of  every point  p in the interior of Q. 
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ProoL By Proposition 7 there is a compact, positive invariant set K 
containing p and all four fixed points. There can be no periodic orbit in K, 
since any such orbit must encircle the fixed point (fi~, P2) and therefore 
intersect both K + and K + -.  But both are positive invariant by Lemma 7 
and they intersect only at (t~1, P2); hence, there cannot be a periodic orbit. 

Now suppose that ( - v J C H ,  0)~ co(p). It will be shown that this leads 
to a contradiction. Note that there is a neighborhood U of ( - v~ /C~ ,  0) in 
which pz(--vz--C21P1--C22P2)>.O, since C 2 1 v 1 - - l ~ 2 C l 1 > 0  and that 
equality holds only for P2 = 0. From the supposition there must exist an 
unbounded, increasing sequence {t,} such that lim p2(t,, p ) = 0 .  Thus, for 
L large enough, p(tn; p) ~ U for all n > L. This implies that/sz(t , ;  p) > 0 for 
all n > L  [with strict inequality, since p2(t,,;p)>O by Proposition 1]. 
Further, there exist N and M with M > N > L  such that 
p2(tM; P)< PZ(IN; p). Then, by the mean value theorem, 

P2(tM ; p ) -  p2(tN; p ) =  ~2(~; p)(ta4- tN) (68) 

with IN<~< tM and ~52(v; p ) < 0 .  Thus, either p ( z ; p ) ~ K  + -  or 
p(r; p) e K -  - ,  since it is only in these sets that /52 ~ 0. Also, since/52(t; p) 
is continuous in t and/52(1N, p) > 0, there must exist v' with tu < v' < v such 
that /52(~';p)=0 [but note that p(v ' ;p) :~f i ] ,  so that p(r ' ;p)~K + or 
p(v~; p ) ~ K  + (since /52=0 only on the boundaries of these sets). Note 
finally that 

K -  + ~ K + - = (ill ,  J~ 

K + c ~ K - -  c {(pl,p2)EKI--v2--C21Pi--C22P2=O} 

K + - m U = ~  

Thus, if p(z'; p ) e K  + , and since p(tM; p)~ U, the positive invariance of 
K + - (Lemma 7) is contradicted. But if p(z'; p) e K + and p(z; p) e K + -,  
the positive invariance of K -  + is contradicted, while if p(v'; p) e K -  + and 
p ( ~ ; p ) E K - -  [recalling that /52(~;p)<0, so - v 2 - C 2 1 p l ( ~ ; p ) -  
C22P2(t"; p ) r  the positive invariance of K + is contradicted. Thus, the 
hypothesis ( -  vl/Cl~, 0) e co(p) contradicts Lemma 7. 

By similar reasoning the fixed points (0, 0) and (0, -v2/C22 ) are not in 
co(p). Thus, by the Poincar6-Bendixson theorem, co(p) = {(ill, r | 

Only one case remains, namely CH > 0, C22 > 0, C12 > 0, C2~ > 0, 
C l 1 C 2 2 - C 1 2 C 2 1 < 0  , C 1 2 v z - Y 1 C 2 2 < O  , and C21Y1- -Y2Cl l<O.  As men- 
tioned previously, these conditions imply that v~ < 0  and v2<0. It is 
verified easily from Table II that (0, 0) is unstable and that (-v~/C,~, O) 
and (0,-v2/C22) are asympotically stable. From Proposition4 and 
Eq. (15) it is clear that (ill, fi2) is a saddle point. There is thus an open set 
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U containing (--Vl/Cll,O) such that co(p)={(--Vl/CllO)} for every 
p e U and an open set V containing (0, -v2/C22) such that 
co(p)= { (0, -v2/C22)} for every p e K Because (P l, P2) is a saddle point, it 
has local one-dimensional stable and unstable manifolds (stable manifold 
theorem), which generate global stable and unstable manifolds W ~ and W ~ 
by extending the local manifolds backward and forward in time, respec- 
tively. By definition co(p)={(fil,/02)} if and only if p ~ W  ~. Also, 
t im,~ co p(t; p ) =  (ill, t~2) if and only if p e W ~. Thus, there is an orbit 
connecting (ill, fi2) to itself if and only if W ~ c~ W ~ r ~ .  Showing that this 
is not the case is the key to understanding the co-limit sets of points in Q 
for this final parameter range. 

Proposit ion 14. Let C I I > 0  , C 2 2 > 0  , C 1 2 > 0  , C21~>0, 

C l l  C22 - C12C21 < 0, C12v 2 - v 1 C22 < 0, a n d  C2~vl - vzC n < 0. Also, let  p 
be any point in the interior of Q but p r  ~. Then either 
co(p)= {(-Vl/Cl~,O)} or co(p)= {(0,-v2/C22)}. Also, let q~ W ~. Then 
co(q) = {(Pl, fi2)}, but in every neighborhood of q there exist p~ and P2 
such that co(p1) = {(-Vl/Cl~, 0)} and co(P2)= {(0, -v2C22)}. 

Proof. By Proposition 7 there exists a compact, positive invariant set 
K containing all four fixed points and p. By Lemma 7 and methods used 
in the preceding proofs there is no periodic orbit and (0, 0)r 
Since (-v~/Cl~,O) and (0,-v2/C22) are asymptotically stable, if 
( - - v 1 / C l l  , 0)~co(p), then in fact co(p)= { ( - - v 1 / C l l  , 0)} and similarly for 
(0,-v/C22). Since p e W  ~, co(P)r Thus, by the Poincar6- 
Bendixson theorem, if (t51, t~2) e co(P), there is an orbit connecting (fi~, P2) 
to itself. But any such orbit must intersect the boundary of K + u K -  + 
twice, and both intersections would be transversal; the existence of such an 
orbit would therefore contradict Lemma 7. The first part of the proposition 
follows. 

Now define the basin of attraction BA1 of the fixed point ( - v ~ / C u ,  O) 
as the set of points in Q with omega-limit set { ( -Vl /C l l ,  0)}, and similarly 
define the basin of attraction BA2 of the fixed point (0, -v2/C22). The con- 
tinuity of the flow ensures that BA1 and BA2 are open, and of course they 
are disjoint. Since Q is connected, it follows that any path from 
( - V j C l l ,  0) to (0, -v2/C22) must intersect W ~ u {(0, 0)}. Thus, any path 
from ( - V l / C u ,  0) to (0, -v2/C=) that intersects the coordinate axes only 
at these fixed points must intersect W ~. Since any such path may be con- 
tinuously deformed to the coordinate axes, W ~ must have an accumulation 
point p' on the axes. Note that W~u{(0,0)}  is closed and that, by 
Proposition 1, W ~ does not intersect the axes. Thus, p' = (0, 0). 

The one-dimensional stable manifold is the union of (fi~, fi2) and two 
trajectories. It was just shown that one of these trajectories connects (0, 0) 
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to (t~l, P2). By applying the Poincar&Bendixson theorem to the time- 
reversed flow, it is easy to see that the other trajectory could either exit any 
compact set (in finite time) or else connect (0, 0) to (r fi2)- But this latter 
case would imply that W ~ bounds an invariant region that contains only 
the fixed points (0, 0) and (Pl, r and no closed orbits. Since there is no 
orbit connecting (ill, fi2) to itself, the omega-limits of all points inside this 
compact invariant region would be empty; this is ridiculous. Therefore, the 
second trajectory in W ~ must exit every compact set. 

It is then clear that W ~ is a separatrix (it splits Q into two invariant 
regions) between BA1 and BA2. Since W ~ has empty interior, the second 
part of the proposition follows. | 

3.4. B i fu rca t ion  Sets and Phase Por t ra i ts  

The asymptotic behavior of every trajectory in Q has been established 
in the previous subsections. Hence, it now is possible to sketch the global 
flows in all parameter regimes (with one exception because of the limitation 
in Proposition 12) in a systematic way by superimposing them on figures 
that include the lines defined by 

- - V  1 - -  C l l P l  - -  C 1 2 D 2  = 0 (69) 

- - V 2 -  C 2 1 P l  - -  C 2 2 P 2  = 0 ,  (70) 

on which /51 = 0 and/52 = 0, respectively. These lines, of course, were used 
extensively in establishing the o)-limit sets. 

Figures 12-15 depict a complete coverage of the physical parameter 
space when Cll 4 0  and C22 4 0  in the form of two-dimensional plots. Not 
every possible combination of parameters is presented, because the form of 
the equations allows a permutation of the indices. Thus, while the case 
Vl ~> 0, v2 < 0, C12 >~0, and C21 < 0  is not in the figures, it is analogous to 
the case v 1 < 0, v 2 ~> 0, C12 < 0, and C12 ~> 0 presented in Fig. 14. Each plot 
shows the parameter space broken into regions in which the flows are 
qualitatively equivalent. The boundaries of these regions (heavy lines) 
correspond to transcritical bifurcation points. Within each region a sketch 
of the flow in Q is presented along with the construction lines, Eqs. (69) 
and (70). The proposition or corollary to which each region corresponds is 
indicated by PN or CN. As a boundary is crossed, a transcritical bifur- 
cation occurs and the flow shown on one side changes to the flow shown 
on the other side. 

In four of the regions, which are depicted and marked by asterisks, in 
which there is a fixed point in the interior of Q and C12 C21 < 0, the flows 
may be misleading. Proposition 12 did not rule out the existence of one or 
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Cm 

PIO 

PIO 

P9 

P9 

v2>O 
C21>0 

l,' 1 

Fig. 12. 

Fig. 13. 

Bifurcation points (heavy lines) for V2~0 , C21 ~0.  In each region of parameter 
space the typical flow is sketched. 

C21 
PIO 

/ 

v2_>O 
C~2->0 

P9 

/"1 

PIO ~ ~  CI 

C21 ul = u 2 Cu 

Bifurcation points (heavy lines) for v 2 ~> 0, C12 ~> 0. The equation of the curve in the 
third quadrant is C21Vl = v2 Cll. 
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more closed orbits in Q. Equation (64) did provide a criterion for their 
nonexistence, but for fixed values of Cll and C22 it is always possible to 
choose (C12C2~) 2 large enough to violate that criterion. This would not 
then imply the existence of a periodic orbit, but it would leave the question 
open. As discussed previously, to settle the matter it is only necessary to 
study the unstable manifold of (-Vl/C~l,0) [or indeed (0,-v2/C22)].  
Numerically obtained approximations to this manifold are presented in 
Fig. 16. They indicate that if a periodic orbit were to exist for the case 
studied, its amplitude would have to be smaller than the resolution of the 
numerical calculation. It seems unlikely that any such closed orbits exist in 

�89 

P]O 

P l l  

y, : C21 z~__.._L 

C 12" 2 C11 

y1<O 
Czl -> 0 

Clz 

~ P 11 

P13 
/ CII 

v2Clz: ~ C22 

Fig. 14. Bifurcation points (heavy lines) for v I < 0, C2~ ~> 0. The equation of the curve in the 
fourth quadrant is v2C12 = vl C n .  
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this parameter regime. No bifurcations occur at any of the fixed points; so 
a periodic orbit would have to be born in some kind of global bifurcation 
when (C12 C21)2 > (Cxl C22) 2. 

Considering the restrictions on interaction processes used to derive the 
model equations (3), it is important to know how the introduction of small 
additional processes (e.g., the production of species i in a j-k interaction) 
affects the evolution of the system. For  the two-dimensional case a theorem 
from the dynamical systems literature, Peixoto's theorem, ~5) and 
Proposition 7 allow a complete understanding of this question. The 
theorem only applies to systems on compact sets, hence the invocation of 
Proposition 7. For  systems on a compact subset of @2 the theorem asserts 

�89 
vl<O 
C12z0 

P 12" P lO 

_ Z/1022 
"2- c~--2- 

Cl l  

C2~ 

Fig. 15. Bifurcation points (heavy lines) for v I < 0, Ct2 ~> 0. 
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0.8 
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Fig. 16. Numerically computed  trajectories for vl = - 2 ,  v2 = 1, C1~ = 1, CI2 = 2, C2~ = - 2 ,  
and C22 = l. The heavy curve is the unstable manifold of the fixed point  at (2, 0). Note  that 

(CjzC21/CIx C22)2 = 16 > 1. 

that if there are only a finite number of fixed points at each of which the 
stability-determining eigenvalues have nonzero real part, if there are no 
periodic orbits, and if there are no orbits connecting saddle points, then the 
system is structurally stable. The two-species equations (36) satisfy these 
conditions for almost all parameter values; only the bifurcation values are 
definitely excluded. This means that the addition of any small (and 
physical) terms on the right side of Eqs. (36) will not have any qualitative 
(and only a small quantitative) effect on the typical behavior of the system. 
Thus, if the interaction processes that were excluded to derive Eqs. (36) are 
in fact small, they can be neglected without introducing any qualitative 
effect. If there are in fact periodic orbits in some parameter regimes 
(Proposition 12), then Peixoto's theorem ensures that the system is struc- 
tually stable if there are only a finite number of periodic orbits and if none 
of the stability-determining Floquet multipliers is equal to one in modulus. 

Some general conclusions can be drawn concerning the types of 
behavior that Eqs. (36), and the gas mixture they model, can display 
provided Cl1-r Cz2-r In Table III the various types of behavior are 
summarized. If the periodic orbit associated with r > 0, 102 > 0, C12 C21 -~ 0 
does not exist, as the numerical results suggest, then the presence of any 
self-removal (C~1 r  Czz#0) at all requires the system to approach a 
steady state. In general any initial preparation of the gas mixture, provided 



648 

Table III. 

Holloway and Doming 

Types of Behavior Exhibited by Two-Species Gas Mixture 
Model (for Cll >0 ,  C2z>0) a 

Parameter range Behavior 

vl>~0, v2 1> 0,/5~ ,.< 0, 
and/or/52 ~< 0 

Vl<0, v2>~00r v2<0, vl~>0, 
/51 ~< 0 and/or/52 ~ 0 

fil > 0,/52 > 0, C12 C21 < 0 
(which implies vl < 0 or 
v2 <O or vl <O and v2 <O ) 

/51 >0, /522>0 , CI2C21 •0, 
Cll C22 - C12C21 > 0 (which implies 
v1<0 and v2<O) 

/51 > 0, /52 ~> 0, C11 C22 - C12C21 < 0 
(which implies vl < 0 and v2 < 0 

Both species die away to zero 
number density 

One species dies away and the system 
achieves equilibrium with one 
species surviving 

Both species survive and 
approach either an equilibrium 
or a periodic cycle (Fig. 16) 

Both species survive and 
approach an equilibrium (Fig. 17) 

Only one species survives and 
approaches an equilibrium; 
which species survives depends 
upon the initial conditions 
(Fig. 18) 

a DI = (C21 Y1 --  C11Y2)/ (C11C22-  C12C21) a n d / 5 2  = (C12Y2 - C22vl)/(C11C22 - C12C21). 

both species are actually present, will evolve to the same steady state 
(cf. Fig. 17). For  one parameter  range, however, the system shows great 
sensitivity to its initial preparation.  When  r > 0 ,  /)2 > 0, and 
C n  C = - C 1 2 C 2 1  < 0  the system can evolve to either of the steady states 
( - V l / C l l ,  0) and (0, -'91/C22), depending on the initial number  densities 
(el. Fig. 18). Of  course, it also could evolve to (>1, t~2), but  this requires 
very special and precise initial condit ions exactly on the stable manifold of 
(t~l,tS2). Such initial condit ions are unlikely to be achieved, since in 
at tempting to produce  such a special initial condition,  tiny, r andom uncer- 
tainties will result, so that  they are not  on this manifold; hence, they will be 
on one side or the other, resulting in an apparent ly  r andom selection of 
which species is to survive and which equilibrium is to be approached.  

The global flow structure sketched here can be compared  to explicit 
solutions of the two-species equat ions obtained by Boffi and Spiga ~176 for 
special cases of the parameter  values. The asymptot ic  behavior  exhibited by 
their special solutions agrees with the general results obtained here. 
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Fig. 17. Numer i ca l l y  computed  t ra jector ies for  v 1 = - 3 ,  v 2 =  - 3 ,  C u = 2 ,  C12= 1, C21 = 1, 
and C2z = 2. All trajectories approach the interior fixed point as required by Proposition 13. 

2.0 

1.8 
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O.2 ~ ~  
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0 i I I llO I ~ ~ Pl 
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Fig. 18. Numerically computed trajectories for v 1 = - 2 ,  v2 = - 2 ,  Cll = 1, C12 = 3, C21 = 3, 
and C22 = 1. The separatrix (45 ~ line) clearly separates the basins of attraction of the two fixed 
points (2, 0) and (0, 2). 

822/49/3-4-16 
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3.5. Two-Species Systems Without Self-Removal 

The previous analysis of the two-species equations has consistently 
been based on the conditions Cll > 0 and C22 > 0 throughout. These con- 
ditions require that the collision of two identical gas molecules sometimes 
results in the destruction or loss of one or both molecules. Of course, a case 
with CH < 0 or C22 < 0 is not physical and of no concern. But cases with 
C1~ = 0 and/or C22 = 0  are physically relevant and must be considered. 

If there is no self-removal, then the previous analysis is no longer 
valid. In particular, the proof of Proposition 7 no longer is adequate and a 
compact, positive invariant set may not exist. There is certainly not a 
positive invariant box like K for all parameter values: suppose CH = 0 and 
v~ < 0; then the flow on the invariant p~ axis is governed by fi~ = -v~p~ > 0 
and the density of species 1 grows without bound. Analogously, if C22 = 0 
and v 2 < 0, species 2 grows without bound. Because of the limited inter- 
action processes allowed in the model, a single gas without self-removal 
can only be consumed or produced by the background gas. 

Not  all of the lemmas and corollaries associated with Proposition 7 
are lost, however. In particular, if CH = 0 but C22 > 0, then Lemmas 1 and 
3 are easily modified. These lemmas (and the corollary to Lemma 3) can 
then be used to establish (0, 0) as the c~-limit of every point in Q for the 
associated parameter regimes ( C u = 0 ,  C m > 0 ,  C22>0, v~>0, v2>0)  
(Fig. 19). It also is straightforward to extend the analysis by constructing a 
compact, positive invariant set for the range of parameters CH = 0, C12 > 0, 
C22 > 0, V l > 0, v2 < 0 and thereby show that (0, -v2/C22) is the ~o-limit of 
every point not on the p~ axis (Fig. 19). 

When Cm > 0 and C1~ = 0 the system becomes much more difficult to 
analyze, because it has not been possible to find compact, positive 

P2 P2 

0 u2<O 

C22 

,o I ~ " ~ - - ~ ~  
Fig. 19. Typica l  flows for the case C1~ - 0 with v~ > 0, C22 > 0, Cm > 0. 

PI 
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invariant sets containing arbitrary points of Q. In particular, it has not 
been possible to show that some solutions do not become infinite in finite 
time. For example, it has not been possible to show that pathological cases 
such as the one sketched in Fig. 20 do not occur. 

One interesting case that can be fully analyzed is characterized by the 
conditions Cll = C22 = 0, v~v2 < 0, v~ C12 < 0, and v2C2~ < 0. The equations 
are then the Volterra-Lotka equations of population biology. These 
equations have been studied extensively,/~) and are well understood. The 
flows consist of a family of concentric closed orbits in Q surrounding the 
stable fixed point (-v2/C2~, -v~/C~2) with amplitudes that depend upon 
the initial conditions (Fig. 21). To establish this it is necessary to construct 
a Liapunov function for the system; this is done in Ref. 2. As noted by Boffi 
et al., I~l this flow can be thought of intuitively as occurring in a degenerate 
Hopf bifurcation as C~1 and C= go to zero. 

3.6. A Mani fo ld  of Fixed Points 

There may be some interest in the behavior of the system when a 
manifold of fixed points exists. An analysis of such a case will be presented 
here for the sake of completeness. 

P2 

- C12/z/I 

,ll /o 1 

Fig. 20. A pathological flow of a type that might occur for Cll = 0, C12 < 0, C21 > 0, V 1 > O, 

v2>0. 
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& 

/01 

Fig. 21. The type of flow that occurs for Cl1=C22=0, C122>0, C21 <0, FI<~0 , F2>0. 

F o r  t h e  parameter r a n g e  vl  C21 - F 2 C l l  = 0, v2C12 - v 1 C22 ~ 0, v 1 < 0, 

v2 <0,  C1, > 0, and C22 > 0 there is a line of fixed points in Q extending 
from (-Vl/C,1, 0) to (0, -vl/C22 ). 

This manifold of fixed points arises in a bifurcation from three fixed 
points, ( -v l /Cn ,  0), (t51, t)2), and (0,-v2/C22); as the parameters are 
further varied, the manifold immediately bifurcates back to the three fixed 
points, which as a result have undergone changes of stability. This bifur- 
cation corresponds schematically to the transition in Fig. 15 from P14 to 
P13 by passing through the intersection of the bifurcation sets 
"V 2 = C 2 1 ( Y 1 / C l l  ) and v2 = C2z(vl/C12). 

Using Proposition 4 and Eq. (15), it is immediate that the eigenvalues 
of the Jacobian at any point (t51,152) on the manifold are 

21 = 0  (71) 

•2 ----- --151Cll - 152 C22 < 0 (72) 

It is easily verified that the appropriate eigenvectors are ( -C12/Cl l ,  1) and 
(151, (C22/C12) 152), respectively. The vector ( -  C12/Cn, 1) of the zero eigen- 
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& 

- u 1/C n 

Fig. 22. An attracting manifold of fixed points. 

P~ 

value is tangent to the manifold of fixed points, and this manifold is 
therefore a center manifold for each of the fixed points in it. Since )~2 < 0, it 
follows that this manifold is locally, exponentally attracting (this result is a 
direct consequence of Palmer's linearization theorem (it) or the center 
manifold theorem(8)). 

Now, given any point p e Q, p r (0, 0), there is a compact, positive 
invariant box K (Proposition 7) containing (0, 0), p, and every ( ~ ,  P2)- 
Thus, ~o(p)r ~ .  If ~o(p) does not intersect the manifold of fixed points, 
then the Poincar6-Bendixson theorem applies and re(p)= (0, 0), but this 
will produce a contradiction as in previous proofs. However, if q em(p) 
and q =  (Pl, P2) for some (Pl, P2) on the manifold, then o ( p ) =  q, since 
Palmer's theorem In) provides a local stable manifold for each fixed point. 

Thus, each initial state [except (0, 0)] is asymptotivally attracted to a 
single point on the manifold of fixed points (Fig. 22). 

4. R E C O N S T R U C T I O N  O F  D I S T R I B U T I O N  F U N C T I O N S  

Naturally, the distribution functions f,(v, t) for the species that com- 
prise a gas are of interest. Hence, it is desirable to know how properties of 
the flow generated by Eqs. (3) on Q, (~+)u, are reflected in the properties 
of the flow generated by Eq. (1) on the phase space of almost everywhere 
non-negative integrable functions (E~+) u. In this section the connection 
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between these two systems will be explicitly developed for the special case 
in which there is no external force field and the kernels depend only upon 
the molecular velocities with which the ith-species particles leave the 
collision events, i.e., 

F i = 0  (73) 

s ! _ s g~jHo(v, w'-~ v) - gijHo(v) (74) 

g~,iZo(V', w' ~ v) = g~),iX0(v) (75) 

This special class of scattering kernels preserves probabilities and therefore 
conserves species number densities, but  not momentum or energy. For this 
special case, Eqs. (1) become 

N + I  

t?f~ (v, t ) =  Z { - g i J f i P J +  V~(v)pipj} (76) 
c~t j = l  

where 

v0(v) = g~)gij(v)+ g~,iz0(v) (77) 

and the integrals over w' and v' have been performed. These equations 
generate a flow on (/5+) N with fixed points ( f l " " f N ) r  (Ll) N determined 
by 

N + I  

0 =  ~, {-g0fic3j+Vo(v)~iC3j}, / = l ,  2,...,N (78) 
j = t  

where ~j = ~ fs.(v)dv is simply some number. Solving for f,. for every i gives 

~ "~'Y~+ll N 0 ( v ) P J  ( 7 9 )  

2_.j= 1 goPy 

Integrating over v gives an equation that the ~j must satisfy for f,., 
i = 1, 2 ..... N, to be a fixed point. This equation is 

N + I  

0=f i i  Z [g~+god+g~.i(1--tlo)]fit (80) 
j = l  

or, using the definitions of C 0 and vi, (1) 

j = l  

These are just the fixed point equations (6) for the number densities. Thus, 
the ~ are identical to the fii, and Eqs. (79) and (81) provide a one-to-one 
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correspondence between the fixed points for Eqs. (3) and (1) for the special 
case [Eqs. (73)-(75)] under consideration. 

If Eqs. (3) are solved for p~(t), i= 1, 2,..., N, then Eqs. (76) can be 
solved easily for f;(v, t) as 

f~.(v, t) =fi(v, 0) exp - ~ go pj(r) dr 
j = l  

N + I  t 
+ ~ V,j(v) [~ p,(t') p:(t') 

j~l 

] x exp -- go , p j ( Z )  d'c dr' (82) 
j = l  

As a first case, consider any of the infinite number of initial distribution 
functions that satisfy 

f; = j f;(v, o) a~ (83) 

for some fixed point (fl,-.., fu)" Then, f fi(v, t ) dv=f l ;  for all time and 

( U+l ) 
f/(v, t )=f / (v ,  0)exp - ~ go fijt 

j = l  

~N+lvij(V)~ifj [ ( ~I )I 
j= 1 1 - exp - gvfl:t (84) 

+ EY'~llgiJfiJ j=1 

Since g• f> 0 and f: >~ 0, it is obvious that, provided X~N +1 ~:=1 g~/Sj r 0, 

~'~Uq- 1 V0.(u 
lim fi(v, t ) -  - - ' " j= l  P~PJ i= 1, 2 ..... N (85) 

~N+; go~j , t ~ o O  j ~ l  

which is just the fixed point in (/~:-)w associated with (fil""/)N) in Q. 
Thus, the system (76) decays to the fixed point, or equilibrium velocity dis- 
tribution, exponentially with rate ZN+11 gijfj, which is the total interaction 
frequency. 

More generally, consider any initial distribution f.(v, 0), i = 1, 2 ..... N, 
with corresponding number densities p~(0), i =  I, 2 ..... N. Suppose that 
p~(t) ~ fl~ exponentially for all i = I, 2 ..... N, where (/51 ,..., fiN) is some fixed 
point of Eqs. (3) in Q, i.e., {f} is the omega-limit set of p(0) and 

{M,  e t<~T (86) lift - -  P ( t ) l l  ~ _~,;, t > T 
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for some M, o-, T > 0 .  This requires that if gijpj--~ 0 for e v e r y j < N +  i as 
t--* o% then giN+ lPN+ ~ # 0 (recall that species N +  1 is the background 
gas). Note also that if gijPj--* goPjr O, then goPJ is bounded below by a 
strictly positive number by the invariance properties discussed in 
Proposition 1. 

Writing r/i(t)= ~5i- pi(t), we find the exact solution for f~(v, t) as 

( N+I  gijf i j t)exp[_N+l t dr]  fi(v, t)=f~(v, 0) exp - j_~ ./~1 go fo "J(~) 

N+I t _ [ N+I 1 
+ S Vo(v)fo Pi#jexpL-j__~,  giy#j(t- t ' )  

j = l  

[ f ] xexp - ~, g~ ,rb(z )dr  dt' 
j= l  

N+I t 
+ ~ v,j(v) f^ (;,~j + #j~i + ~i~j) 

j =  1 
~ u  

[ ;; 1 xexp - ~ gij ,PJ(Z)dr dt', i=l ,2, . . . ,N (87) 
j = l  

Consider an integral of the form 

' exp [ ~ ' f [ g i j ,  ] I= [ rh(t' ) -- py(z) dr dt' (88) 
j = l  

If g(jpj ~ 0 for every j < N + 1, then 

exp - ~ g~j ,pi(r)dr <~exp[--giN+~PN+~(t--t')] (89) 
j=  1 

since pi(t)>~O for all t, and ifgijpj -/-* O, then 

e x p I - ~ g o . f (  pi(r)dr]<~exp[-c~(t-t ')] (90) 
j = l  

for some c~>0. For either case, using the exponential bound on r h, we 
obtain an estimate of the form 

f :  f :  Me ~ K(' ') II1~< Me KU ") dt' + - ' ' dt' (91) 

(with K=giN+lPN+l or K = c 0 .  So 

K,[  1 KT 1 
Ill <<.Me L~;e K --~-_-g j + Me LK-~J (92) 
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and I--*0 as t-~ oo. Since rh(t ) rb(t ) also goes to zero exponentially, the 
integral 

t [ N+I , . d r l d t  ' 
fo rhqiexp L - / ~  ' go~P/(~) 

admits a similar estimate and goes to zero exponentially. 
The exponential decay of t/j ensures that 

fo ~111(r)& <oo 

(93) 

(94) 

and so 

f,(v,O) exp - ga~jt exp - 
j = l  j = l  

also goes to zero as t --, oo. Only the terms 

go f~tb(~) d~] (95) 

N+I , t _ [ N+I 1 

[-N+I t 1 

L j = I  

remain. Integrating by parts yields 

~TaN+ 1 ( N+ l 
J - ' ~ J =  ~ Vii(v) fi~fiJ _ g~fi/t) ~N2(gu~  i ({1 --exp \ - -  j~ ,  

j = l  

- ~ gi~foqk(t ' )exp -- g~/ ,PJ(r)dr dt' 
k=l  j = l  

In view of the previous estimates, 

(96) 

(97) 

J--, Zy_+, ' v,j(v) ~,Pi 
'}-~y_+l I gijfij 

(98) 

exponentially as t ~ ~ .  Thus, as t ~ oo, fi(v, t), i = 1, 2 ..... N, evolves to the 
fixed point (fl(v) ..... fN(v)) associated with (Pl ..... fiN)- 

This correspondence between exponential decay in the problem for the 
number densities and the problem for the distribution functions allows the 
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geometry of the flows to be related. It is clear that to the stable manifold of 
a fixed point fi there corresponds an inward-flowing set (in-set) of the 
corresponding fixed point f. It is not clear that this in-set for f is a 
manifold, but if it is, then it must be infinite-dimensional. Further, since the 
map from (L+)  N to (~+)N defined by integration over all velocity is 
continuous (but note that it does not have an inverse), if fi is a stable 
hyperbolic (i.e., exponentially attracting) fixed point, then f is stable. 

In this section degenerate kernels were used in the interaction integrals 
and the distribution function reconstructed from the number densities. In 
the scattering integrals the kernel used is one that can be made to preserve 
particle numbers, but not momentum and energy in a collision. The other 
interaction kernels were written in an analogous form. Within the context 
of this additional restriction on the model equations (1) studied here, and for 
the case of no external forces, a one-to-one correspondence exists between 
the equilibria for the number densities and the equilibria for the dis- 
tribution functions. Furthermore, exponential stability of a number density 
equilibrium in Q implies the exponential stability of the corresponding dis- 
tribution function equilibrum. However, it is not at all clear that this is a 
general result that might also be true in the case of more realistic kernels. 

It is also possible to reconstruct the distribution function in the case 
with nonzero and time-dependent external forces (but still with the same 
degenerate kernels). This extension of the construction presented here was 
brought to the attention of the authors by V. Protopopescu. The results 
relating equilibria do not extend so easily, however; in fact, in the case of 
time-dependent external forces there are no equilibria for the coupled 
Boltzmann equations even when there are fixed points for the number 
density equations. 

5. C O N C L U S I O N S  

Boffi et aL (jl proposed Eqs. (1) as a theoretical model for the study of 
the nonlinear time evolution of a multispecies gas undergoing binary 
collision creation, scattering, and removal processes. In the present paper 
some of the mathematical consequences of the model have been studied in 
order to shed light on the time evolution of such gases. 

For  the full N-species equations (3) it was straightforward to show 
that the solutions remain positive for as long as they exist. This means that 
the model does not allow an unphysical dominance of the removal 
processes; as all the particles of some species are consumed, the removal 
mechanism shuts down in a physically reasonable way. 

Particular emphasis was placed on the location of fixed points or 
equilibria where the creation and removal processes exactly balance. The 
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special form of the equations allows the fixed-point problem to be com- 
pletely understood. The static bifurcation behavior of the problem is 
thereby solved: the system may exhibit (possibly multiple) transcritical 
bifurcations and a bifurcation from isolated fixed points to manifolds of 
fixed points. It was possible to make statements concerning the local 
behavior of the system when it was near such equilibria, especially for 
parameters in the dense good subset of the full physical parameter set. 
Some general criteria for a fixed point to be unstable were developed. The 
existence of the contracting direction at a fixed point (Pl ..... fiN) provided 
that PiCii ~ 0 for some i is particularly interesting. At such an equilibrium 
there is a positive density of species i that undergoes self-removal, since 
Cii > 0, but this removal process in fact ensures that there is some special 
set of initial conditions [-stable manifold for (Pl,---, PN)] which evolve to 
the equilibrium. By exploiting a special relationship [Eq. (20)] between 
different fixed points, it was possible to show that fixed points enter Q via 
transcritical bifurcations at the boundary of Q. Based on this and the 
explicit stability criteria for the (0,..., 0) fixed point, it was shown that the 
full N-species model equations have stable equilibria, with any number 
from zero to N gas species surviving. The precise parameter ranges in 
which these fixed points exist were not identified, although necessary con- 
ditions for such a fixed point to have been created by a specific sequence of 
bifurcations were given. 

In the two-species case ( N =  2) the Poincar&Bendixson theorem was 
used to establish the asymptotic behavior of every initial condition in Q 
when self-removal is present (C11>0, C22>0). For most parameter 
regimes almost all initial states evolve to a single equilibrium. The 
parameter range in which a separatrix splits Q into two sets, each the basin 
of attraction for a fixed point, also was determined. There is a possibility 
that in one parameter range the system might evolve to a periodic solution, 
but this is unlikely. The possibility could be excluded by examining the 
global unstable manifold of one fixed point. 

Finally, it is important to recognize that the self-removal (C~l, C=) 
and background creation/removal (vl, v2) terms are very important. There 
are qualitative differences in system behavior between cases with C~i or v~ 
small and cases with C~i = 0 or vi = 0. Most importantly, neither species can 
survive unless Vl r  and v2r  and for one species to survive it is 
necessary that Vl < 0  or v2<0. 
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